
www.ijdesign.org 53 International Journal of Design Vol. 12 No. 1 2018

Introduction
The last few years have witnessed tremendous growth of the
Internet of Things (IoT), including connected and smart devices
for the consumer market. A succession of notable products have
been introduced and each has marked the advance of technologies
into the home, including NEST, a learning thermostat, in 2011;
SmartThings Hub, originally launched as a KickStarter project in
2012; Philips Hue, an intelligent LED lighting system, in 2012;
and the rivals Amazon Echo and Google Assistant, smart speakers
with intelligent personal assistant capabilities, in 2016. Through
such products, together with the availability of different types
of sensors, smart outlets, smart appliances and devices, it has
become possible for consumers to program and automate their
homes to some extent. Accordingly, smart-home technologies
have moved out of well-controlled laboratory environments
(De Ruyter & Aarts, 2004; Intille, 2002; Kientz et al., 2008;
Offermans, van Essen, & Eggen, 2014) and into the messy and
nuanced everyday lives of ordinary people. Connected products
are designed with programming interfaces as the primary way to
interact with them, thereby blurring the line between product and

tool. The traditional principle of designing products ready for use
has faded and been replaced by productized toolboxes that require
end users to customize and finish the design themselves to fit their
individual contexts and lifestyles.

In this article, we first review the extensive body of work
related to end-user programming in the smart home, and then
analyze the particular issues, based in part on a first-person user
experience, leading to a set of new concepts for better capturing
relevant information for the design of smart homes. We outline
how these concepts help solve common issues and conclude with
an outlook on future steps.

ORIGINAL ARTICLE

Addressing the Need to Capture Scenarios, Intentions and
Preferences: Interactive Intentional Programming in the
Smart Home

Mathias Funk 1,*, Lin-Lin Chen 1, Shao-Wen Yang 2, and Yen-Kuang Chen 2

1 Industrial Design Department, Eindhoven University of Technology, Eindhoven, the Netherlands
2 Intel Corporation, Santa Clara, California, USA

The Internet of Things (IoT) and connected products have become part of the advance of ubiquitous technology into personal and
professional living spaces, such as the smart home. What connectivity and distributed computing have made possible, is still programmed
only according to more or less simplified rule systems (or in traditional code); the mapping between what end users intend or would
value and what can be expressed in rules is not straightforward. This article analyzes the temporal, preferential, technical, and social
complexity of mapping end-user intent to rules, and it suggests new concepts to better frame information that needs to be captured to
create smart-home systems that better match users’ intents. We need a new approach aimed at first capturing end users’ intentions and
potential usage scenarios, then providing this information to a control system that learns to resolve intentions and scenarios for available
devices in the context. The new approach should deconstruct and rebuild IoT-related programming at a higher level of abstraction that
allows end users to express long-term intentions and short-term preferences, instead of programming rules. Based on related work, a
first-person perspective and analysis of current smart-home programming practices, the concept of Interactive Intentional Programming
(IIP), is introduced and discussed.

Keywords – End-User Programming, IoT, Smart Things, Systems Design, Domain Modeling.

Relevance to Design Practice – Smart systems often cannot realize meaningful behavior because they lack contextual information from
end users. This article introduces Interactive Intentional Programming as a new approach to designing systems that capture semantically
rich, high-level usage scenarios, intentions, and preferences in a novel domain model that can enable adaptive, smart behavior through
machine intelligence.

Citation: Funk, M., Chen, L.-L., Yang, S.-W., & Chen, Y.-K. (2018). Addressing the need to capture scenarios, intentions and preferences: Interactive intentional programming

in the smart home. International Journal of Design, 12(1), 53-66.

Received May 15, 2017; Accepted February 5, 2018; Published April 30, 2018.

Copyright: © 2018 Funk, Chen, Yang, & Chen. Copyright for this article is
retained by the authors, with first publication rights granted to the International
Journal of Design. All journal content, except where otherwise noted, is licensed
under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License.
By virtue of their appearance in this open-access journal, articles are free to use,
with proper attribution, in educational and other non-commercial settings.

*Corresponding Author: m.funk@tue.nl

mailto:m.funk%40tue.nl?subject=

www.ijdesign.org 54 International Journal of Design Vol. 12 No. 1 2018

Addressing the Need to Capture Scenarios, Intentions and Preferences: Interactive Intentional Programming in the Smart Home

Related Work
In the following, we review the issues related to end-user
programming in the actual contexts of smart homes. While end-
user programming or development (EUD) is a large and diverse
field, we focus here on issues that emerge when applying EUD
to a private, sensitive context of everyday living. Furthermore,
this style of EUD requires a mix of manual and screen-based
tasks on different devices that are often scattered throughout the
home environment.

Tools and Technologies

End-user programming tools for the home environment have
been created and investigated in academia (Davidoff, Lee, Yiu,
Zimmerman, & Dey, 2006; Dey, Sohn, Streng, & Kodama, 2006;
Humble et al., 2003; Newman, Elliott, & Smith, 2008; Offermans
et al., 2014; Truong, Huang, & Abowd, 2004). However, they
have largely remained at the proof-of-concept level, and today
most end users program their smart homes by using trigger–action
programming (Ur, McManus, Pak, & Littman, 2014; Ur et al.,
2016) to develop rules in the form of if trigger, then action. A
prime example is the website IFTTT (https://ifttt.com) which
stands for if this, then that. IFTTT offers services that enable end
users to create a new recipe by following simple steps to select

the event trigger and the corresponding action. These recipes can
then be shared with other users via the IFTTT website. Similarly,
SmartThings (https://smartthings.com/) offers an interface that
allows end users to define trigger conditions and actions. Similarly
to IFTTT, SmartThings offers predefined templates for users to
easily configure rules. Differently from IFTTT, SmartThings
allows some actions to be taken under certain conditions, e.g.,
preconfigured modes (such as Home, Away, and Night) or selected
periods (such as from 9 p.m. to 6 a.m., or from sunset to sunrise).
If the standard templates do not meet users’ needs (e.g., combining
multiple sensor inputs), SmartThings allows users to write their
own programs in the Groovy programming language. Stringify
(https://stringify.com/) is yet another programming interface that
offers trigger conditions and actions. Differently from IFTTT
or SmartThings, Stringify uses a drag-and-drop graphical user
interface instead of a textual (programming) interface.

Behind the end-user programming interface there is also
middleware for smart home spaces. However, most state-of-the-art
middleware solutions are not yet friendly enough for end users to
turn their needs into rules. They include Samsung SmartThings,
Apple HomeKit (https://apple.com/ios/home/), Google Assistant
(https://assistant.google.com/), Axeda Machine Cloud (http://
ptc.com/axeda), Microsoft HomeOS (https://www.microsoft.
com/en-us/research/project/homeos-enabling-smarter-homes-
for-everyone/), Berkeley Building-Application Stack (Krioukov,
Fierro, Kitaev, & Culler, 2012), Octoblu Integration of Everything
(https://octoblu.com/), and Wyliodrin—The IDE for IoT (https://
wyliodrin.com/). The aforementioned all require that an application
provides a manifest to describe the desired services by specifying
the corresponding sensors and actuators on a per-rule basis. There is
a clear mismatch between users’ ability to program and the current
programming interfaces. An exception is the Wukong platform
(Huang et al., 2015), which defines the abstraction of sensing and
actuation to facilitate IoT programming, and, in effect, enables
write-once-deploy-everywhere for proficient programmers.
However, the imperative nature of current middleware solutions
remains a major issue in end-user programming. Yet another
problem in current middleware solutions is their inability to adapt
to changes. IoT devices are rather unreliable by design, due to
the requirements of low cost and low power consumption (e.g.,
battery power). Devices may even malfunction or be disconnected
from the home network from time to time. Because smart-home
programs should be deployed once and run forever, there needs to
be a certain degree of redundancy in sensing/actuation capabilities.

Weaving Smart-Home Technologies
into the Real Home

Programming the smart home is not a one-time task, but a
continuous process usually undertaken by a single knowledgeable
person—a guru (or hacker)—in the family. Mennicken and
Huang (2012) describe four phases of growing a smart home:
initial planning, preparing technical infrastructure, iterating until
it fits, and reaching (temporary) stability. Woo and Lim (2015)
investigated how participants in eight households in Korea

Mathias Funk is assistant professor in the Future Everyday group in the
Department of Industrial Design, Eindhoven University of Technology, the
Netherlands. He has a background in Computer Science and a PhD in Electrical
Engineering. His research interests include complex systems design, distributed
IoT applications, remote data collection, systems for musical expression, and
design tools. In the past he has worked at the Advanced Telecommunications
Laboratory (ATR) in Japan, at RWTH Aachen, at Philips Consumer Lifestyle,
and at Intel Labs, Santa Clara, CA. He is also a co-founder of UXsuite, a high-
tech spin-off from Eindhoven University of Technology.

Lin-Lin Chen is dean of the Faculty of Industrial Design at Eindhoven University
of Technology. She is also a professor in the Department of Design at National
Taiwan University of Science and Technology (NTUST). She received her BS
degree from National Cheng Kung University in Taiwan and her PhD from the
University of Michigan at Ann Arbor. She was dean of the College of Design at
NTUST from 2004 to 2010, president of the Chinese Institute of Design from
2007 to 2008, and convener for the arts (and design) area committee of Taiwan’s
National Science Council from 2009 to 2011. She is the founding editor-in-chief
of the International Journal of Design (SCI, SSCI, AHCI), current president
of the International Association of Societies of Design Research (IASDR), and
a fellow of the Design Research Society. Her research focuses on user–IoT
interfaces, design innovation, and product aesthetics.

Shao-Wen Yang is a senior staff research scientist at Intel Labs, Intel
Corporation. He received his PhD degree in computer science from National
Taiwan University in 2011. He joined Intel Labs in Taiwan in 2013 as a resident
scientist in the Intel–NTU Connected Context Computing Center and focused
on research and development of Internet of Things technology and middleware.
In 2016 he moved to California, and started to focus on the Internet of Video
Things. He served on the technical program committee of the Design Automation
Conference and has served as a guest editor for several international journals.
His current research interests include various aspects of visual fog computing,
especially ease-of-use frameworks for workload creation, and partitioning and
orchestration of visual fog workloads. He has over 20 technical publications, and
over 60 patents and pending patent applications.

Yen-Kuang Chen received his PhD degree from Princeton University, NJ,
and is a principal engineer at Intel Corporation, Santa Clara, CA. His research
areas span from emerging Internet of Things (IoT) applications to computer
architecture that can embrace emerging applications. He is passionate about IoT
and the smart home. He has more than 100 IoT devices in his home. He has 60+
US patents, 20+ pending patent applications, and 100+ technical publications.
He is a fellow of the IEEE.

https://ifttt.com
https://smartthings.com/
https://stringify.com/
https://apple.com/ios/home/
https://assistant.google.com/
http://ptc.com/axeda
http://ptc.com/axeda
https://www.microsoft.com/en-us/research/project/homeos-enabling-smarter-homes-for-everyone/
https://www.microsoft.com/en-us/research/project/homeos-enabling-smarter-homes-for-everyone/
https://www.microsoft.com/en-us/research/project/homeos-enabling-smarter-homes-for-everyone/
https://octoblu.com/
https://wyliodrin.com/
https://wyliodrin.com/

www.ijdesign.org 55 International Journal of Design Vol. 12 No. 1 2018

M. Funk, L.-L. Chen, S.-W. Yang, and Y.-K. Chen

applied trigger–action style programming to create rules, and
how these rules were adopted. They found that after the initial
installation stage, the participants experimented with new rules,
went through a process of incorporating the rules into their family
daily routines, and finally reached a stage of either routinization
or removal of unsuitable rules. Clearly, it is important to support
all phases of the smart home development process, from initial
setup to fine-tuning and adoption of smart home behaviors, and
also to consider all family members including the passive users
(Mennicken & Huang, 2012).

Mismatch between User Needs and Existing Tools

From studies on end-user programming in the wild (Demeure,
Caffiau, Elias, & Roux, 2015; Mennicken & Huang, 2012; Woo &
Lim, 2015) as well as exploratory studies into future smart-home
programming (Bellucci, Vianello, Florack, & Jacucci, 2016; Ur
et al., 2014), it emerges that simple trigger–action programming
rules often cannot adequately express users’ intentions and
mental models. For example, end users usually do not think in
terms of physical sensors, but of triggers at a more abstract level,
e.g., activities or states. In an explorative study conducted by
Ur et al. (2014), three categories of triggers were identified: (1)
physical sensors (e.g., motion is detected), (2) triggers related to
activities, locations, and states (e.g., when no one is in the room),
and (3) fuzzy triggers that might involve machine learning (e.g.,
when the water is too hot). The latter two categories are not
well supported by the current trigger–action-style programming
tools. Another explorative study was conducted by Bellucci et al.
(2016) using a toolkit (T4Tags 2.0) that contains tangible tokens.
Common triggers that they found included presence in a room,
time, location, and environmental sensing, while common actions
included sending notifications or reminders, controlling lights,
and controlling an appliance. Time was found to be an important
trigger, but users were often not satisfied with the built-in temporal
triggers (Demeure et al., 2015). To better support mental model
accuracy, Huang and Cakmak (2015) recommended making a
distinction between different types of triggers (states, events),
as well as between different types of actions (instantaneous,
extended, and sustained).

In order to work within the constraints of trigger–action
programming tools, end users have to express the abstract
triggers (e.g., whether someone is in the family room) by using
simple rules with concrete sensors (such as whether specific
physical motion sensors detect movements for a specific period
of time). A meaningful smart-home behavior is thus broken up
and described in several fragmented simple rules, which are
linked to different physical sensors and actions. There are several
problems with such ad-hoc solutions. First, without a connection
to the original intention, each rule might not be easy to interpret
or explain after a certain period of time. To manage the rules
that they had created, end users in one study tried to associate
meanings by adopting specific naming schemes (Demeure et al.,
2015). For example, one participant named rules by noting the
devices, the triggered actions, the destination state of the device,
and higher-level goals, while another participant followed the

schema DAYTYPE–ACTION–CONDITION where DAYTYPE
can be weekday, weekend, or holiday. A better solution would be
to offer support to capture this information, rather than relying on
users’ self-imposed naming schemes. Second, these simple rules
are neither robust nor migratable, because they depend on the
availability and functioning of specific sensors and actuators. If
the specific sensor or actuator is not available (in a new household)
or is broken (after some period of time), manual reprogramming
of the rule is necessary, even if the original intention remains the
same (see section on First-Person Experience below). HomeOS
(Dixon et al., 2012), a smart-home operating system developed by
Microsoft, addresses such issues by requiring that an application
provide a manifest to describe the devices or services that it needs
in order to function, providing a layer of abstraction above the
physical devices.

Intentions and Conflicts

At a higher level, Mennicken, Vermeulen, and Huang (2014)
identified three major challenges and directions for smart-home
research—meaningful technologies, complex domestic spaces,
and human–home collaboration—based on an extensive literature
review, analysis of smart-home solutions, and filed studies. They
argued that to achieve meaningful technologies it is important
to support the goals and values of inhabitants. What are these
goals and values of smart-home users? Based on need-finding
interviews in the field, Takayama, Pantofaru, Robson, Soto, and
Barry (2012) identified goals such as peace of mind, ecologically
conscious, saving money, entertain and impress others, and
personalize the home. They found that the satisfaction of home
automators often comes from creating connections to the home
and family members, rather than simply controlling the home. In
another study, Mennicken and Huang (2012) summarized four
main motivations for home automation: modernization, positive
feedback cycles, hobby, and saving energy. The translation of
such high-level needs into simple rules that connect rather crude
sensors and actuators is extremely challenging.

Mennicken and Huang further noted that smart technologies
could result in conflicting high-level goals; for example, providing
peace of mind through remote connection to the home can
conflict with privacy and security concerns. In addition, different
household members might have conflicting values or interests
over time; for example, between parents’ energy saving and kids’
maximum comfort. Not only do needs differ among different
households and among different members of the same household,
but also needs can be different for the same individual over time.
In several aspects, they argued for the necessity to tag applications
with high-level goals, and to provide high-level rationales behind
automation tasks. All these factors point to going beyond task-level
rules to better capture the intentions of the users. A common issue
is conflicting rules that end users produce unintentionally (Woo
& Lim, 2015). Unexpected results occur when rules that were
created for different reasons become active for the same devices
with conflicting instructions. Since there is currently no interface
to help users specify how such conflicts should be resolved or
give priority to certain rules, the users have to manually revise the

www.ijdesign.org 56 International Journal of Design Vol. 12 No. 1 2018

Addressing the Need to Capture Scenarios, Intentions and Preferences: Interactive Intentional Programming in the Smart Home

rules through trial-and-error processes to avoid possible overlap
of activations. Hereinafter, we may refer to end users’ goals and
intentions interchangeably.

While supporting the intentions of end users in a smart
home is important, it has long been recognized to be extremely
difficult for a smart-home system to automatically infer users’
intentions. As Don Norman (2009) commented: “If only the house
could read the mind of its owner. It is this inability to read minds,
or, as the scientists prefer to say, to infer a person’s intentions, that
defeats these systems” (pp. 121-122). There exists the problem
of mutual intelligibility (Suchman, 2007, p. 80): not only is the
smart-home system unable to decipher users’ intentions, but also
users are often left in the dark about what the system knows about
them, how the system knows it, and what the system is doing
about it (Bellotti & Edwards, 2001). One of the reasons why it
is so hard for the smart home to understand users’ intentions is
because users can improvise—they can take situated actions
(Suchman, 2007)—that are unpredictable from sensor data. A
possible approach to resolving this intelligibility problem is to
explicitly include people in the loop. Rogers (2006) argued for a
shift from proactive computing to proactive people. This paradigm
shift is also reflected in the interactive machine learning process
(Amershi, Cakmak, Knox, & Kulesza, 2014) whereby users
iteratively provide information to a learning system, allowing
simultaneous usage and development of the learned model.

Preferences and Overrides

While users have long-term goals and intentions, they might also
have short-term needs and preferences for the specific needs of
the moment. For example, Alan, Shann, Costanza, Ramchurn, and
Seuken (2016) implemented three different types of thermostats—
manual, direct learning, and indirect learning—that consider
tradeoffs between comfort and price, and then evaluated the three
designs in a field study with 30 UK families for over a month.
In the direct learning design, they explicitly designed the system
to allow users to temporarily override the predicted optimal
temperature setting, after which the system would wait for a
certain time before taking back control and setting the temperature
back to the learned optimal temperature setting. Moreover, the
researcher provided a boost option that directly changed the
temperature setting without influencing the learned user’s model.
The results were generally positive in that the end users were
happy with the thermostat autonomously responding to real-time
prices on their behalf, and they felt in control. This in-situ study
indicates that smart climate-control systems can operate largely
autonomously from a good user model, and this is accepted by end
users as long as real-time control is possible through preferences
to allow for meaningful overrides and adjustments of system
behavior according to ad-hoc needs.

Summary

The above review of studies on end-user programming in the
wild and exploratory studies into future smart-home experiences
shows that although trigger–action programming has gained

popularity over the last few years (Ur et al., 2014; Ur et al.,
2016), simple rules are neither sufficient to express desirable
home behaviors, nor are adequate technologies available and
accessible to end users. As Mennicken et al. (2014) argued, future
smart homes need to support higher goals and values of the users.
Consequently, without clearly capturing these, it is very difficult
to orchestrate smart-home behaviors to support users’ needs, to
resolve desired behaviors towards the often messy physical graph,
and to mitigate conflicts or interference between overlapping
behaviors. As argued by researchers such as Rogers (2006), end
users of the smart home should play a more active role. Instead
of having a smart system that imposes an interpretation of the
current contexts and user intentions based on sensor data, it might
be better to provide an interface for the end users to express their
intentions within a certain scenario.

First-Person Experience of
Smart-Home Programming
Over the last three years, one of the authors has installed more
than 150 heterogeneous connected devices in order to gain first-
hand experience of the Internet of Things in an actual personal
home context. Because of a move to a new house and the need to
replace the main hub, the researcher completed three rounds of
installation and reinstallation, offering a rare case study on smart-
home experience beyond the initial installation. In the first part of
this section, we will give a chronological overview of the three
installations and noteworthy issues that emerged in continual
longitudinal use. The second part summarizes and compares the
user’s intentions and the programmed rules in different categories.

Chronological Overview

First installation: At the beginning of the year 2014, the researcher
began to install sensors and smart devices into his home. By
the end of 2014, about 50 devices had been installed and more
than 50 smart rules had been developed during this first phase
of experience using mostly SmartThings and IFTTT. The initial
installation of the devices and rules was more troublesome than
the researcher had expected. The researcher frequently needed to
reinstall devices to make adjustments. In addition, it proved very
difficult to tune the sensitivities of sensors to achieve the intended
smart-home behaviors. Oversensitivity creates many false alarms,
while undersensitivity fails to trigger the actions properly. Both
are undesirable. Unfortunately, today’s feedback systems for
adjusting and calibrating sensors are poor inasmuch as (1) they
offer a limited input and output interface, (2) users sometimes
need to make changes in the physical world in order to see the
effect in the cyber space, and (3) feedback is time-delayed, e.g.,
cool-down periods for motion sensors make tuning difficult or at
least time-consuming.

Second installation: Around the end of 2014, the researcher
moved to a new home. Consequently, the researcher reinstalled all
sensors and smart devices physically into the new environment,
which had a different layout. The researcher found that it was better

www.ijdesign.org 57 International Journal of Design Vol. 12 No. 1 2018

M. Funk, L.-L. Chen, S.-W. Yang, and Y.-K. Chen

to place the devices in the corresponding room, which was not
always straightforward to achieve. Because rules are associated
with the device IDs, if a sensor and its associated actuators are
not properly labeled and moved accordingly, the motion sensor
in the dining room, for example, may erroneously trigger
the light in the living room to turn on. Many more difficulties
were encountered during the second installation process: Some
physical-environment-specific rules from the old house could not
be easily applied in the new house, as the spatial relationships
among rooms and also between devices and rooms were different.
For example, in the first house (Figure 1), because the dining room
is next to living room and already receives sufficient lighting,
only when people are eating at the dining table should the light
turn on, and not just when someone walks through. In the second
house, the dining room is next to the family room instead of the
living room.

Third installation: In late 2015, the main smart-home hub
was upgraded. However, because the new hub did not offer a good
migration tool, the researcher ended up reinstalling all the devices
to the new hub. By then, the family was used to the convenience
of automatic behaviors, and would complain if the system failed
to do things automatically. After two years, device failures started
to occur. However, it was hard to debug a faulty device or system,
due to the lack of interface support (e.g., display). In addition, it
might be too tedious for smart-home users to deal with the faults
of each individual device, often due to an insufficiently robust
design that struggles with interruptions of wireless communication
or battery power.

Additional installations: From late 2015 to late 2016,
50 more devices and 50 more rules were added. There were
additional points of difficulty when these additional devices
and rules were added. It was often cumbersome to adjust some
of the old rules as some new devices and new rules can easily
interfere with each other. For example, a light was programmed
to be turned on when motion started and turned off when motion

stopped. Later, a second rule was added, to turn the light on when
the door was opened and turn it off five minutes after the door
was closed. There was an instance when the light was turned off
while users were active in the room because a user had opened
and closed the door five minutes previously. Looking at the
rules independently, they made sense, but together, unwanted
behavior would occur. Depending on user preferences, turning
on lights could have priority over turning off lights, but current
systems do not notify the user about a potential interference,
nor do they allow one to specify priority easily. Furthermore,
because more customized rules (through multiple cloud services,
e.g., SmartThings, IFTTT, Stringify) had been implemented to
integrate more devices into the system, it became very hard to
debug a problem as an actuation could be triggered by more than
three different cloud services.

In summary, the change from the first to the second
installation was due to moving house, while the change from
the second to the third installation was necessary because of
hardware upgrades. Both are common aspects of contemporary
lifestyles and help illustrate the everyday problems that arise in
the smart-home domain due to incompatibility, hardware and
software faults, and configuration or usage problems that result
from flawed interfaces and inferior usability and design.

User’s Intentions and Implemented Rules

From the chronological overview, several general issues around
setup and configuration, and also around maintenance and updating,
become apparent. These issues are related to hardware failures,
upgrading, physical installation, logical mapping to space, and the
complexity of scaling a smart-home installation leveraging different
external services. In this second part, we focus on programming
and how users’ intentions were mapped to rules, aiming to show
how sensible user needs and high-level requirements cannot be
expressed in rules in state-of-the-art smart-home technologies.

(a) First house (b) Second house
Figure 1. Floor plans of first and second installation sites.

www.ijdesign.org 58 International Journal of Design Vol. 12 No. 1 2018

Addressing the Need to Capture Scenarios, Intentions and Preferences: Interactive Intentional Programming in the Smart Home

From our first-person experience of smart-home
programming, we identified different types of top-level intentions.
Table 1 shows user intentions as reported by the researcher, divided
into four categories: (1) sustainability (by saving water, energy,
or other resources), (2) security and safety, (3) convenience, and
(4) privacy. Note that there are overlaps, e.g., between 1 and
3 in the sense that turning off power for devices under certain
conditions serves the purpose of saving energy and does so in a
highly convenient way through full automation.

Looking at the rules actually implemented in the researcher’s
smart home, as shown in Table 2, two categories were identified:
(1) automatic control and (2) automatic notification. Although
remote control and remote monitoring are technically part of
smart-home systems, they are not considered here because they
lack crucial aspects of automation and delegation of control.
Due to the complexity of rules and interoperability problems
between different smart-home systems and their counterparts in
the cloud, we note that most rules in Category 1 connect isolated
subsystems to implicitly minimize interference with other parts
of the smart home, for instance, the rules about room lighting or
heating. Category 2 rules simply connect sensors to a notification
service that alerts the home owner. While this serves the purposes
of security, and of indication and notification, the quantity of
potentially captured events can result in too few reports and a lack
of information, or too many and thereby information fatigue.

Summary

Comparing Tables 1 and 2 reveals clear differences between users’
intentions and what could be realized using rules connecting
sensors to actuators or information displays. Although the rules
cover many aspects of a smart home, at a low level the particular
technologies demark often insular solutions, as few solutions
are capable of supporting more complex uses spanning multiple
devices or rooms of the smart home. For example, Table 3 shows,
for a specific smart object in the user’s home, how different rules
and intentions can be applied to a single object and how the rules
and intentions are interleaved or even overlap. This gives rise to
two potential problems: (1) technologically, some of the rules

might become complicated to create, test, and maintain, and (2)
it will be very hard for someone else to understand or debug a
system just by looking at the rules. For example, why did we
not automatically turn on the dining-room light, and why is the
time-out period longer between 7 p.m. and 10 p.m. (a semantic
problem that indicates a need for higher-level information).

Analysis of Users’ Intentions and the
Corresponding Rules
With current tools, end users have to first distill their intentions into
a simple automation scenario and then implement this scenario
using the tools available. In practice, many more problems and
issues emerge for the curious and courageous practitioner: even
a perfectly designed and fine-tuned smart home needs to evolve
with changing user needs—as expressed through preferences
and overrides, but facilitated through learning and continuous
adaptation. At a higher level, this is enabled by learning about
users’ preferences instead of operational rules. Only when we
abstract the sensory and actuation capabilities can a smart-home
system leverage information about redundancy, conflicts, and
interference while still allowing users to be in control.

In the following, we expand the problem space to match
the requirement that ideally, intentions and preferences should be
directly recognized and programmable in technology. The problem
space can be classified into three main categories: sensing activities
and scenarios (what is happening?), capturing intentions and
preferences (how would the user like the environment to be?), and
contextual actuation (what should happen in the environment?).
We will outline the categories by characterizing them in terms of
design choices, involved technology, and, if possible, deficiencies
of employed solutions.

Sensing Activities and Scenarios

Related research shows that users want simplicity in programming,
and expect that a system should be able to automatically deal with
different situations in a smart home in a smart way. Unfortunately,
what can be programmed with current state-of-the-art technology

Table 1. User intentions.

1. Saving Energy/Resources 2. Security/Safety

• Reduce energy usage by turning off power (light, HVAC, plug/switch)
• Reduce irrigation water
• Get notified when power or water is used

• Arm the house’s security system
• Close/lock the door
• Turn on the security cameras
• Pretend that we are still in the house
• Alert neighbors and authorities (turn on siren)
• Shut down the electric/gas/water system
• Get notified when something goes wrong

3. Convenience 4. Privacy

• Turn on the light
• Turn on the HVAC
• Turn on plug/switch
• Disarm the security system
• Open/unlock the door
• Wake me up at the right time
• Get information for daily routine, e.g., today’s weather or traffic conditions

• Turn off the indoor cameras

www.ijdesign.org 59 International Journal of Design Vol. 12 No. 1 2018

M. Funk, L.-L. Chen, S.-W. Yang, and Y.-K. Chen

Table 2. User-implemented rules.

1. Automatic control 2. Automatic notification

• Turn on the lights in the front porch and driveway
 - when there is motion, between sunset and sunrise

• Turn on the lights in the living/family room
 - when the door is opened, between sunset and sunrise
 - when there is motion, between sunset and sunrise

• Turn off the lights in the living room
 - between 7 and 10 p.m.: after 15 minutes without motion
 - at other times: after 5 minutes without motion

• Turn off the lights in the family room, dining room, kitchen, front porch,
driveway

 - after 5 minutes without motion
• Turn lights on and off throughout the house to pretend that we are still at

home
 - when we are not home, between sunset and 10 p.m.

• Turn on all lights (and even change their colors)
 - when intruders are detected

• Turn on the siren
 - when intruders are detected

• Turn off the power plug for the TV
 - when everyone leaves the house

• Turn off the power plug for the office
 - when I leave the house

• Turn off the HVAC in the living/family rooms
 - when everyone leaves the house
 - when everyone goes to bed

• Turn off the HVAC in my office
 - when I leave the house

• Turn on the HVAC in the living/family room
 - when I arrive home
 - when I get up

• Turn on the HVAC in my bedroom
 - 10 minutes before I get up

• Close/lock the door
 - 5 minutes after we leave the house
 - 5 minutes after we leave it open or unlocked

• Open/unlock the door
 - when I am coming back

• Turn on the security cameras
 - when everyone leaves the house
 - when everyone is sleeping

• Turn off the cameras
 - when I am coming home
 - when I wake up

• Arm the security system
 - 5 minutes after everyone leaves

• Disarm the security system
 - when any household member arrives

• Reduce irrigation water
 - when it rains outside

• Charge the electric vehicle
 - between 11 p.m. and 7 a.m.

• When the siren goes off
• When a door is opened, and I am not home
• When motion is detected (PIR sensor or video camera), and I am not

home
• When CO/smoke is detected
• When CO2 goes above a certain level
• When water leakage is detected
• When it is time to water/fertilize the garden
• When the sprinkler is on
• When the security system control box is moved or disconnected
• When someone rings the doorbell
• When I forget to close the door
• At 6 a.m., the weather forecast and traffic condition
• At the end of each month, the energy usage analysis

Table 3. User-implemented rules on a single object (example).

Things Rules Intentions

Light in living room

Turn on, when there is motion in the same room, between sunset and sunrise;
Turn on, when the door is opened, between sunset and sunrise;

Convenience

Turn off, 15 minutes after the motion stops, when it is between 7 p.m. and 10 p.m.;
Turn off, 5 minutes after the motion stops, when it is between 10 p.m. and 7 p.m.;

Saving energy/resources

Turn on/off at random times, when owners are not at home, between sunset and 11 p.m.
Turn on, when intruders detected

Security

www.ijdesign.org 60 International Journal of Design Vol. 12 No. 1 2018

Addressing the Need to Capture Scenarios, Intentions and Preferences: Interactive Intentional Programming in the Smart Home

still falls far short of such expectations. Here, we propose to
distinguish between an activity and a scenario; the former refers
to a sequence of user actions with a clear purpose, while the latter
connects such activities to a context (or location) and goes beyond
human activities. For example, reading is an activity, whereas
reading in the bed and reading in the study are two different
scenarios with probably very different intentions—trying to fall
asleep, or not. Likewise, the end of an activity can be expressed
as a scenario to allow for automation or notification. For end-
user programming in the home, scenarios are more relevant and
probably more stable over the long run, whereas activities without
contextual information might be prone to many variations. Users
in a smart environment may have complex needs that correspond
to similar, yet slightly different scenarios. To take smart lighting
in the living room as an example:

• When users are only walking through, they need minimal light,
probably from a low light source.

• When users are chatting, possibly with guests, they need
medium to maximal light.

• When users are watching TV, they need medium-to-low
indirect light.

• When a user is reading a book, he/she needs maximal light, but
in the form of a spotlight.

• When a user is reading from an illuminated tablet, he/she only
needs low light.

• When users need to find lost keys or clean up spilled juice, they
need maximal light, likely coming from the ceiling.

Thus, more and more scenario variants can grow out of
an initially simple scenario of providing light in the living room.
It is very difficult for conventional rule-based trigger–action
programming to address the complexity of these scenario variants.
A first reason is that scenarios and activities are not captured
as such, but only as sensor-based triggers, which makes reuse
difficult (or results in cloning triggers that might then interfere).
Second, it requires complicated imperative rules to describe the
scenarios, and complexity increases exponentially when new
scenarios inevitably need to be added over time. What is needed is
the ability to explicitly define a scenario and to allow the scenario
to be fine-tuned, amended, or branched into new ones over time.
We envision that a better user interface needs to be developed
to allow multiple input combinations of scenarios mixed with
user intentions.

Capturing Intentions and Preferences

Intentions can be seen as the long-term perspective of what we
consider rationally the right things to do. They are expressed
and formulated by end users in moments of clarity and family
consensus, and from a more distanced view than usual daily life.
For instance, New Year’s resolutions carry traces of intentions
and could be named intentions if they are accompanied by
stronger commitments. In smart-home programming, intentions
are rarely formulated explicitly. They are implicit to the planning
and design of a smart-home system, and often surface only as

generic intentions, such as saving resources, protecting life and
assets, being in control, and enjoying convenience and comfort.
Intentions can, however, be very instrumental for resolving
conflicting rules in a meaningful way. For example, a common
rule for smart lighting is to turn on the light when the PIR motion
sensor detects activity and to turn off the light when the PIR motion
sensor detects no activity. The intentions behind these rules might
be convenience and sustainability. When the rules are isolated and
the intentions are implicit, it is difficult to make proper trade-offs.
By explicitly capturing the intentions behind the rules, it becomes
possible for automated systems to reason about meaningful trade-
offs for the users.

Moving from the long term to the short term, user
preferences are an important concept to capture desired changes
in automation—ad-hoc deviations that demark the flexibility of
living spaces, give end users a strong sense of control over the
automated system, and can be a source of data that the automated
system learns from to adapt over time. With user preferences,
conflict resolution becomes ever more complex. Not only do
multiple users have conflicting preferences, even an individual
user can have conflicting preferences with respect to long-term
goals (e.g., losing weight) and short-term desires (e.g., ice-cream
now!). In the smart-home setting, whether to open the blinds or
to turn on the lights involves the conflict of whether to prioritize
the intention of saving energy or that of privacy and security.
Different users could also have conflicting perspectives: For the
husband, turning off the lights means saving energy; for the wife,
keeping the lights on makes her feel safe. There is clearly a need
to record and learn users’ preferences and intentions.

Contextual Actuation

In addition to sensing and triggering conditions, smart-home
programming also needs to address smart actuations that
can adapt from one scenario to another. It is desirable for
smart-home programming to be able to be reused across like
scenarios, becoming a template and allowing for adaptations
during deployment. It is desirable to open up the possibility of
fulfilling users’ needs by different means. This can be achieved
by separating the means from the objective. For example, the
objective of Get me some light can be instrumented as the means
of Lights on or Blinds up depending on the time of day, energy
saving possibilities, and privacy concerns. What are needed are
device-independent actuations, decoupling the physical layer
from intentions. All of these occur when the physical system and
system complexity grow over time with new devices, component
replacements, upgrades, and upscaling in the smart home. Based
on the aforementioned abstraction, smart-home programs should
be able to adapt to changes by remapping the logical actuation
to the currently available physical actuators. Finally, more subtle
qualities of automated behavior, such as dimming instead of
switching, perhaps depending on certain times when the users
would like fewer disturbances, are very difficult for end users to
program using current technologies, especially in a conditional or
parameterized way.

www.ijdesign.org 61 International Journal of Design Vol. 12 No. 1 2018

M. Funk, L.-L. Chen, S.-W. Yang, and Y.-K. Chen

Summary

The overview of the different areas of the expanded problem
space shows that automated living and work spaces such as the
smart home pose challenges that are neither fully understood,
nor solved in practice, let alone in commercial applications
of end-user programming systems. When end users program
rules, they specify which concrete behavior is desired when
a concrete event occurs. This is, however, insufficient for
addressing the daily behavior of end users and their needs over
time in the broader context of everyday life. Consequently, the
possibilities for algorithmic decision making or even machine
intelligence are very limited. Even if a user can program, writing
trigger–action rules for hundreds of devices at home is a daunting
task, potentially amplified by a collection of different platforms
and interfaces. Current programming interfaces do not allow users
to program at a proper level of abstraction and they inhibit reuse
of de-facto-similar rules across devices, scenarios, and platforms
(e.g., smart lighting rules that differ little from smart climate
rules except for the particular sensors and actuators to be used).
At the same time, low-level programming such as trigger–action
rules depreciates fast when devices are added or upgraded, or
simply fail the test of time. In the following section, we develop
the expanded problem space towards a richer domain model to
capture the right information.

Towards Capturing the Right
Information for the Smart Home
We envision much better informed and much more capable
home programming environments in which users should be able
to delegate most automation functionality to smart, underlying
control systems while retaining a certain level of control over
elements that are critical to their experience. Ideally, users should
be able to specify their intentions at a high enough level, so that
smart-home solutions can figure out the right actuation means
based on predetermined user preferences and machine learning.

To progress in this domain, we propose two radical measures:
first, better capturing of information about scenarios and intentions,
and second, the creation of feedback loops between interaction
and captured information that facilitate adaption and learning over
time. Covering both measures fully is beyond the scope of this
article. However, we will address the first part in the following by
introducing novel concepts for designing smart homes that lay the
informational foundations.

Domain Model and Concepts

The system envisioned above operates on a domain model that
takes users’ needs as input, and then learns and adapts accordingly.
Compared to direct mappings between sensors and actuators, i.e.,
concrete trigger–action rules (cf. Figure 2, left), a domain model
consists of concepts that are more abstract, but at the same time
more powerful as a structure to gather information about the
context of the smart home (as a system), the context’s users,
and their intentions. In short, we aim at capturing and modeling
information for designing a smart-home system, by using the
following concepts (see Figure 2, right):

• Scenarios determine the current state of the smart-home
system by abstracting from sensors in the environment towards
states, i.e., what is happening in the world or what is currently
the state of affairs;

• Intentions determine abstract behavior of the system and the
general end-user priorities for realizing this behavior, i.e.,
which behavior of the smart home is desired, or what should
happen given the current state of affairs;

• Preferences allow for ad-hoc control by end users in the
environment by parameterizing behavior from a user interface,
i.e., what small changes need to be applied to the way the
system acts right now;

• Actuations discover and determine the right action, i.e., how a
combination of states, intentions and preferences can result in
the desired changes in the environment by using a set of suitable
direct actuators such as lamps, audio devices, and locks.

physical graph

Scenarios

Intentions

Preferences

Actuation

if❓then❗

actuators in environmentsensors in environment

Conventional
rules

Scenarios

Intentions

Preferences

Actuationsobjective

why/how to
resolve conflicts?

what
action?when?

which
state?

which
desired

outcome?

adjust parameters via UI

determine priorities

discover and
control right action

determine
current state

actuators in environmentsensors in environment

IIP

physical graph

IIP concepts

how to
adjust ad-hoc?

Figure 2. Comparison of conventional rules (left) and new domain model with concepts (right).

www.ijdesign.org 62 International Journal of Design Vol. 12 No. 1 2018

Addressing the Need to Capture Scenarios, Intentions and Preferences: Interactive Intentional Programming in the Smart Home

While the concept of actuations is essential to the operation
of a smart-home system leveraging the domain model, elaborating
on the details of actuation is beyond the scope of this article. In
the following, the first three concepts—scenarios, intentions, and
preferences—will be explained with regard to their properties,
how they differ from conventional end-user programming
concepts, and how they relate to each other.

Scenarios

A scenario connects a context (e.g., a location) to sensor data
indicating activities or system states. This means that scenarios
represent an abstract combination of sensors measuring real-world
activity in the moment and scenarios can therefore be understood
as temporal states of a system. Common example scenarios in the
smart-home domain are (1) family on holiday, (2) evening, and (3)
multiple family members in the living room. These examples show
that scenarios are combinable (e.g., 1 + 2 or 2 + 3), and can even
form contradictory combinations (1 + 3) that need to be resolved
by the system at a later stage. A scenario is activated when (sensor)
event data (see below) matches the conditions of the scenario,
such as the time of day being between 18:00 and 23:00 (activates
Example Scenario 2), or motion sensors recording the number
of people entering a room (activates Example Scenario 3). Such
system states can possibly be specified with arbitrary granularity;
however, most use cases only require states that last from minutes
to hours (Examples 2 & 3), or in exceptional cases, days (Example
1). Likewise, the granularity of spatial locality can vary: scenarios
can be linked to particular parts of the overall home context,
such as rooms, corners, and working places; they can also extend
further than the actual home to cover office or school presence
(all depending on having relevant sensor data available) as long as
they sufficiently describe relevant temporal states that can in the
end be linked to meaningful system activity.

Compared to rule-based programming styles that are
prevalent in the IoT domain, the use of highly semantic scenarios
and the ability to represent and leverage more complex combinations
of events and event data allow users to formulate semantic

information about their everyday life in a more sophisticated way.
Whereas rules can only capture device-specific data and connect
them in simple ways, the domain model allows for a hierarchy of
sensors to drive scenario activation from the highest semantics
available. Conventional rules can capture conditions at device level
efficiently, but are rather difficult for end users to translate towards
activities—and such information is necessary for the smart home
to act smart. Scenarios are constructed from semantic sensor data,
which are not necessarily bound to specific sensors and therefore
allow scenarios to be more portable, durable and robust over space
and time, whereas rules break as soon as a specific device breaks
or is temporarily unavailable. In summary, scenarios abstract from
raw data, combine data towards the activation of a temporal state
over a local context, and give meaning to this state.

Intentions

End users in a smart-home context usually have diverse and
more or less well-articulated needs. Such needs can be very
specific, but commonly follow a general notion of quality of life.
Different aspects of this form a general set of intentions, such as
convenience or comfort, saving resources (time, energy), feeling
in control, feeling safe and secure, or aiming to avoid distractions
or promote social interaction. While intentions are certainly all
desirable (to differing extents), they are quite general and have
a guiding function of abstract behavior. They can be internally
resolved towards objectives, as shown in Figure 2, which are not
directly exposed to the end user and match the physical graph with
its actuators in the home. As stated above, intentions represent
our “good,” rational thinking that forecasts and plans. Capturing
these thoughts is a novel approach and can often only be achieved
through more complex interaction, examples that inspire, or
defaults and templates that can be personalized. Figure 3 shows an
example of two parallel intentions, save energy and convenience.
The first intention has a higher priority than the second, which
is internally resolved to two objectives, switch off lights (i.e.,
deactivate all lights, corresponding to save energy) and welcome
light (i.e., activate a porch light, corresponding to convenience).

physical graph

Scenarios

Intentions

Preferences

Actuation

if “door_closed”
then “light_1:off”

actuators in environmentsensors in environment

Conventional
rules: example

save energy

Scenarios

Intentions

Preferences

Actuations“switch off lights”

what
action?when?

which
desired

outcome?

dim down in 1 min

save energy:
convenience:

all lights except porchnobody at home

actuators in environmentsensors in environment

IIP

physical graph

IIP concepts:
example

which
state?

“welcome light”

why/how to
resolve conflicts?

how to
adjust ad-hoc?

|||||||||||
|||||||

Figure 3. Comparison of lighting examples using conventional rules and domain-model concepts.

The right-hand part shows how parallel intentions are prioritized and resolved to parallel objectives and matching actuation.

www.ijdesign.org 63 International Journal of Design Vol. 12 No. 1 2018

M. Funk, L.-L. Chen, S.-W. Yang, and Y.-K. Chen

Preferences

Still, everyday life will not always follow our plans, or guidelines
derived from plans. Hence the counterpart to intentions is
preferences. In contrast to long-term, rational thinking as represented
by the concept of intentions, short-term preferences are crucial
to capture user needs in the moment as shown by the study of
different thermostats (Alan et al., 2016). Preferences essentially fit
intentions to everyday life and shape how intentions are translated
into actuation. Neglecting preferences would cause rapid ageing of
the system’s operationalization of intentions, and the initial fit with
everyday life would be lost. The concept of preferences would be
ideally mirrored by simple, targeted interfaces that allow users to
tweak system behavior in the moment.

Preferences are not exclusively hedonic; they can be seen
as real-time corrective measures from which the system can learn
in order to adjust the way long-term intentions are translated
into actuation. Preferences are therefore crucial (1) to tweak the
system’s behavior as a combination of intention-driven behavior
and preference adjustments, and (2) to enable system learning and
adaptation over time of intentions towards what inhabitants of the
smart home actually prefer on a daily basis.

Chain of Behaviors

The above concepts form a chain from activity sensing to
scenarios and system states, linking them to prioritized intentions
and preferences, which finally determine actuation through
actuators. Sensors and actuators, as low-level components, are
omitted in this article. This chain is very different from other
IoT programming approaches in the sense that it offers a way
to express ambiguity and alternatives in intentions of one or
more users, and to capture (ad-hoc) preferences in a consistent
and highly semantic way. This is possible because this chain
includes enough information for machine intelligence to reason
and make decisions for the human users. Nevertheless, end users
can interact with this intelligence through very context-specific
and non-intrusive interfaces in the human environment. As an
example, Figure 3 illustrates the simple case of light automation
for saving energy: on the left-hand side, a rule is depicted that
switches off the light when the door of a room is closed. On the
right, a similar rule is shown with domain-model concepts that
formulate a much broader use case, saving energy in the entire
house, by switching all lights off in response to the absence of
the inhabitants. This general behavior driven by the intention to
save energy is mixed with a second intention, convenience, that
will allow for all lights to be switched off except for the porch
light, to allow returning inhabitants to safely enter the home.
Although the concepts are individually not more complex than
a simple rule, together they enable broader scopes of automation
and intentionally programmed behavior.

Interactive Intentional Programming

In the first half of this section, we illustrated that a domain model
can capture relevant information to address end-user needs for
automation. In the remainder of the section, we will outline an

approach to fill out and leverage this domain model: Interactive
Intentional Programming (IIP). The approach essentially
(re)structures the conventional usage phase into two sub-phases
that correspond to domain modeling tasks performed in the
respective sub-phases:
(1) In the setup phase, users specify (1) scenarios (high-level

understanding of what is going on in the smart home) and
(2) intentions for actuation (how the automated system
should respond to active scenarios). This intentional
programming part of IIP not only captures information
about end-user intentions and preferences, but also aims at
expressing how relevant particular intentions are in a certain
scenario (prioritization).

(2) In the use-and-refine phase, users interactively fine-tune
the scenarios and preferences through daily use. That is, in
this interactive programming part of IIP, the domain model
is meant to evolve dynamically in an interactive way as it
explicitly allows for frequent re-specification of intent and
the adjustment of preferences at any moment. With this
plasticity, IIP caters for the needs of everyday smart-home
usage, in which exceptions are the rule. That is, in IIP the
domain model acts as a growing knowledge base that learns
preferences from user interaction and determines how
automation should react to sensed data and control actuation.

The nature of IIP is that it is essentially an interactive form of
domain modeling that leverages formal concepts like intentions,
but also scenarios and preferences for aspects of programming
automation that are conventionally implicit or tacit.

In the following, we illustrate IIP with a first-person
experience to demonstrate the viability of IIP through explicit
modeling of scenarios, intentions and actuation.

Scenario awareness is the capability of differentiating
between a user’s actions under a diverse set of scenarios. As
illustrated in Figure 4, the apparent behavior of a user leaving
the house (door closes) may be for work or taking out the trash
can. In the scenario of leaving for work, the user has an intention
of security, and accordingly would like the door to be locked
immediately and securely; in the scenario of taking out trash, the
user has an intention of convenience for leaving the door unlocked

Sensing

Scenario

Intention

Actuation

Rule-based IIP

Door closes

Leaving
for work

Taking
out trash

Security Convenience

Lock door
immediately

Keep door
unlocked

Lock door
in 3 minutes

Figure 4. Scenario awareness (visualized as a change of
behavior from sensing to actuation).

www.ijdesign.org 64 International Journal of Design Vol. 12 No. 1 2018

Addressing the Need to Capture Scenarios, Intentions and Preferences: Interactive Intentional Programming in the Smart Home

briefly until the user gets back indoors again. The conventional
rule-based approach will leave users no choice but to set up a
fixed-interval timeout, e.g., three minutes, for both scenarios; as
experience shows, our first-person user (see above) was locked
out of the house from time to time with this implementation.
IIP, on the other hand, makes it possible to differentiate between
scenarios and then to generate actuations as fitting as possible.

Intention awareness is the capability of differentiating
between intentions of one or more users, given one or more
scenarios. In the left-hand part of Figure 5, one user is carrying
out scenarios of (recipe) reading and cooking at the same time,
with intentions of comfort and health, respectively; each of these
intentions leads to two possible actuations. Being unaware of
intention makes a smart-home system unable to address potential
conflict in actuations, and it is apparent that IIP can differentiate
among possible actuations and make a conflict-free actuation
decision. The right-hand part of Figure 5 shows another example
in which there is no apparent resolution to a conflict. There are
two users, both in the scenario of reading. However, one user’s
intention is privacy whereas the other’s is energy saving. Together,
these intentions lead to conflicting combinations of actuations.
Specifically, privacy makes sure the blinds are closed, whereas
energy saving tries to keep the lights off; if both are implemented,
the room will never have light in the nighttime. Intention awareness
allows IIP to differentiate and resolve conflicts among intentions.
For example, a conflict can be resolved by prioritization of users.
If one user has greater authority than the others, that user’s
intention may override all others; conflict resolution can also be
addressed by mitigating among multiple intentions.

Summary

The domain model and the IIP approach that we introduce here
are responses to identified problems in the domain of smart-home
automation. As explained above, we propose to tackle foremost the
informational deficiencies of earlier approaches by capturing user
needs as intentions and preferences, and users’ everyday behavior
as scenarios. The domain model concepts—scenarios, intentions,
and preferences—allow for a domain modeling approach that
provides high-level semantics to what a smart-home system should
achieve in a particular context and time. Together, these concepts

inform and resolve everyday situations in a chain of behaviors,
through scenario and intention awareness. This can be leveraged
in novel smart-home systems that reason based on the provided
input aggregated in the domain model and, in addition, extend it
by learning from everyday behavior and changes in preferences.

Discussion
In the previous section, we introduce a novel domain model with
concepts that aim at developing the possibilities of programming
the smart home through user-friendly declarative means,
instead of low-level imperative rules that we show to be rather
disconnected from user needs (cf. Related Work and Analysis
sections). We also frame an approach, Interactive Intentional
Programming (IIP), which relies on frequent interactions with end
users to create and evolve concrete instances of the domain model
for the particular contexts of the end users. The domain model
captures information that allows an IIP system to become scenario
and intention aware. It is important to note that the IIP approach
purposely departs from conventional trigger–action programming
and uses far more abstract means to capture information that is
intended to be leveraged by advanced control systems and by a
middleware layer that resolves semantics to concrete actuation.
The scope of IIP is limited to the management of information
flowing in and out of the domain model. Nevertheless, IIP clearly
addresses the different challenges identified in the first part of this
article: capturing activities and scenarios, eliciting intentions and
preferences, and connecting them into a new form of actuation
that leverages high-level semantics to solve common problems of
rule-based trigger–action programming:

• Higher goals of strengthening connections among family
members (Takayama et al., 2012) and seamlessly supporting
family rituals (De Ruyter, 2003) are still beyond current
smart-home solutions, but might come within reach with IIP.

• Conflict and interference of rules is an important aspect of
smart-home automation that currently cannot be resolved
within the realm of automation; it needs social interaction
and mediation. IIP allows one to capture information at a
high enough level such that conflicts become “visible” to
the automated system and a resolution can be attempted,

Scenario

Intention

Actuation

IIP

Reading Cooking

Comfort Health

Open window Turn on stove
exhaust hood

Turn off stove
exhaust hood

Scenario

Intention

Actuation

IIP

Reading

Privacy Energy
saving

Close blinds Turn off lightsTurn on lights
if too dark

User 1 User 2

Open blinds
if too dark

Figure 5. Intention awareness (visualized as a chain of behaviors omitting the sensing part);

left-hand part shows intentions with overlapping actuation, right-hand part with conflicting actuation.

www.ijdesign.org 65 International Journal of Design Vol. 12 No. 1 2018

M. Funk, L.-L. Chen, S.-W. Yang, and Y.-K. Chen

e.g., prioritizing different intentions such as save energy
and convenience as shown in Figure 3 towards a setting that
switches off all lights except a porch light for convenience.

• Independence of physical devices, i.e., IIP allows for more
generalized smart-home programming that can adapt to
different sets of physical devices and reroute actuation, e.g.,
light can be provided by different sources in the context
depending on the preferences of different users that are present.

• Robust classification of human activities and system states
is supported by IIP. For instance, referring to the three
categories of triggers identified in Ur et al. (2014), the
reported intentions mostly relate to activity triggers, but not
yet to fuzzy triggers that require learning and adaption (e.g.,
user preferences under different contexts). In other words,
scenarios can represent states and can help deal with more
sensed complexity than can rules.

• Simple rules do not protect against information overflow and
alert fatigue. As an example, a user wants to make sure that she
receives information that guests are in her house. If she uses
simple rules for that, sometimes she will receive a false alarm,
or too many alerts in the case of a real emergency. In such
cases, she would have to use multiple mobile apps to track
down the root cause of the problem, i.e., debugging on the fly.
In contrast, IIP allows one to specify intentions that control the
amount of information that end users are exposed to.

It is important to note that using higher-level semantics
and restricting access to IIP to largely declarative means may
make end users feel they have less direct control over their
home environment. This results from delegating real-time
decision making largely to a control system that is instructed
by scenarios, intentions, and preferences expressed in domain-
model concepts. With conventional rule-based approaches, end
users have to translate their intentions, combined with activity
recognition through sensors, and encode them into atomic rules.
In conventional rule-based systems, rules represent a direct
connection between a sensor or event source, and an actuator
that is triggered when the reading of the former meets a certain
predetermined condition. End-user intentions are only indirectly
represented in such rules, depending on the ability of end users to
concretize their needs adequately. This is one of the most difficult
tasks in programming, and inadequate training, expertise, or
means may lead to conflicting, inconsistent, mutually interfering,
or broken rules that ultimately do not satisfy user needs.

Finally, when we look again at the first-person experience
of smart-home programming, there are also blind spots in the
intended behavior, in the form of desired smart-home behavior
that is not even considered relevant because its realization in
rules is not deemed feasible or practical. A critical point for the
first-person experience as shown above is that intentions and rules
largely correlate and end users cannot really think of intentions
before implementation. For the purposes of this paper, we had
to reverse-engineer the intentions from implemented rules and
since the implemented rules represent a subset of what would be
possible with IIP, it is clear that intentions are underrepresented in
everyday smart-home usage.

Conclusion
Designing for IoT and the use of connected products in the smart
home is difficult, as related research shows. In this paper, we
present additional evidence focusing on the long-term use of such
technology as it scales, evolves, and continues to pose challenges
for the brave practitioner. A central conclusion is that the temporal,
preferential, technical, and social complexity of mapping end-user
intent to rules needs new concepts to better frame information
that needs to be captured to create smart-home systems that better
match users’ intentions. Based on the analysis of related work
and an account of a multi-year first-person experience of smart-
home programming, we identify two main areas for improvement:
first, better capturing information about scenarios, intentions, and
preferences, and second, the creation of feedback loops between
interaction and captured information that facilitate adaption and
learning over time. In this article, we argue for new concepts
organized in a domain model and propose Interactive Intentional
Programming (IIP) as a novel smart-home programming approach.
The domain-model concepts are explained and contrasted against
trigger-condition–action rules and similar end-user programming
systems. The concepts are explained in context through several
examples that illustrate how the challenges identified earlier can be
successfully tackled with IIP. In the end, the proposed IIP approach
deconstructs and rebuilds contextualized IoT programming with
a higher level of abstraction that enables a substantial use of
machine intelligence in the domestic environment, as a shift from
directly programmed automation towards a better balance between
the human and the system.

While research into the operationalization of the domain
model and IIP is currently in progress, the concepts have matured
sufficiently and will be supported by technical implementations
in the near future. What also changes with approaches like IIP
that leverage conceptually higher-level data is how we will design
future smart-home products: we need to address different stages
of technology adoption and use, we need to account for failure
transparently, we need new interfaces to information and learning
machines, and we need to carefully design the nuances of human–
machine cooperation in personal environments. As a contribution
to future design according to these principles, this article provides
background, rationale, and conceptual building blocks.

Acknowledgements
This research was supported in part by the Ministry of Science and
Technology of Taiwan (MOST 107-2633-E-002-001), National
Taiwan University, Intel Corporation, and Delta Electronics. The
authors would also like to thank Suzanne L. Thomas and Sangita
Sharma for their great support and the many fruitful discussions.

References
1. Alan, A., Shann, M., Costanza, E., Ramchurn, S., & Seuken,

S. (2016). It is too hot: An in-situ study of three designs for
heating. In Proceedings of the Conference on Human Factors
in Computing Systems (pp. 5262-5273). New York, NY: ACM.

www.ijdesign.org 66 International Journal of Design Vol. 12 No. 1 2018

Addressing the Need to Capture Scenarios, Intentions and Preferences: Interactive Intentional Programming in the Smart Home

2. Amershi, S., Cakmak, M., Knox, W. B., & Kulesza, T. (2014).
Power to the people: The role of humans in interactive
machine learning. AI Magazine, 35(4), 105-120.

3. Bellotti, V., & Edwards, K. (2001). Intelligibility and
accountability: Human considerations in context-aware
systems. Human–Computer Interaction, 16(2-4), 193-212.
doi:10.1207/S15327051HCI16234_05

4. Bellucci, A., Vianello, A., Florack, Y., & Jacucci, G.
(2016). Supporting the serendipitous use of domestic
technologies. IEEE Pervasive Computing, 15(2), 16-25.

5. Davidoff, S., Lee, M. K., Yiu, C., Zimmerman, J., &
Dey, A. K. (2006). Principles of smart home control. In
Proceedings of the International Conference on Ubiquitous
Computing (pp. 19-34). Berlin, Germany: Springer.

6. Demeure, A., Caffiau, S., Elias, E., & Roux, C. (2015).
Building and using home automation systems: A field study.
Retrieved from https://hal.inria.fr/hal-01265223/document

7. De Ruyter, B. (2003). 365 days of ambient intelligence
research in HomeLab. Amsterdam, the Netherlands: Royal
Philips Electronics.

8. De Ruyter, B., & Aarts, E. (2004). Ambient intelligence:
Visualizing the future. In Proceedings of the Working
Conference on Advanced Visual Interfaces (pp. 203-208).
New York, NY: ACM.

9. Dey, A. K., Sohn, T., Streng, S., & Kodama, J. (2006).
iCAP: Interactive prototyping of context-aware applications.
In Proceedings of the International Conference on Pervasive
Computing (pp. 254-271). Berlin, Germany: Springer.

10. Dixon, C., Mahajan, R., Agarwal, S., Brush, A. J., Lee, B.,
Saroiu, S., & Bahl, P. (2012). An operating system for the
home. In Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation (pp. 25-25).
Berkeley, CA: USENIX Association.

11. Huang, J., & Cakmak, M. (2015). Supporting mental model
accuracy in trigger-action programming. In Proceedings
of the International Joint Conference on Pervasive and
Ubiquitous Computing (pp. 215-225). New York, NY: ACM.

12. Huang, Z., Tsai, B. L., Chou, J. J., Chen, C. Y., Chen, C. H.,
Chuang, C. C., ... & Shih, C. S. (2015). Context and user
behavior aware intelligent home control using WuKong
middleware. In Proceedings of the IEEE International
Conference on Consumer Electronics – Taiwan (pp. 302-303).
Piscataway, NJ: IEEE. doi:10.1109/ICCE-TW.2015.7216911

13. Humble, J., Crabtree, A., Hemmings, T., Åkesson, K. P.,
Koleva, B., Rodden, T., & Hansson, P. (2003). “Playing with the
bits” user-configuration of ubiquitous domestic environments.
In Proceedings of the International Conference on Ubiquitous
Computing (pp. 256-263). Berlin, Germany: Springer.

14. Intille, S. S. (2002). Designing a home of the future. IEEE
Pervasive Computing, 1(2), 76-82.

15. Kientz, J. A., Patel, S. N., Jones, B., Price, E. D., Mynatt,
E. D., & Abowd, G. D. (2008). The Georgia Tech aware
home. In CHI ’08 Extended Abstracts on Human Factors in
Computing Systems (pp. 3675-3680). New York, NY: ACM.
doi:10.1145/1358628.1358911

16. Krioukov, A., Fierro, G., Kitaev, N., & Culler, D. (2012).
Building application stack (BAS). In Proceedings of the
Fourth ACM Workshop on Embedded Sensing Systems for
Energy-Efficiency in Buildings (pp. 72-79). New York, NY:
ACM. doi:10.1145/2422531.2422546

17. Mennicken, S., & Huang, E. M. (2012). Hacking the
natural habitat: An in-the-wild study of smart homes,
their development, and the people who live in them.
In Proceedings of the International Conference on Pervasive
Computing (pp. 143-160). Berlin, Germany: Springer.

18. Mennicken, S., Vermeulen, J., & Huang, E. M. (2014). From
today’s augmented houses to tomorrow’s smart homes: New
directions for home automation research. In Proceedings
of the International Joint Conference on Pervasive and
Ubiquitous Computing (pp. 105-115). New York, NY: ACM.

19. Newman, M. W., Elliott, A., & Smith, T. F. (2008). Providing
an integrated user experience of networked media, devices,
and services through end-user composition. In Proceedings
of the International Conference on Pervasive Computing
(pp. 213-227). Berlin, Germany: Springer.

20. Norman, D. (2009). The design of future things. New York,
NY: Basic Books.

21. Offermans, S. A. M., van Essen, H. A., & Eggen, J. H. (2014).
User interaction with everyday lighting systems. Personal
and Ubiquitous Computing, 18(8), 2035-2055.

22. Rogers, Y. (2006). Moving on from Weiser’s vision of calm
computing: Engaging ubicomp experiences. In Proceedings
of the International Conference on Ubiquitous Computing
(pp. 404-421). Berlin, Germany: Springer.

23. Suchman, L. (2007). Human-machine reconfigurations:
Plans and situated actions. Cambridge, UK: Cambridge
University Press.

24. Takayama, L., Pantofaru, C., Robson, D., Soto, B., & Barry,
M. (2012). Making technology homey: Finding sources of
satisfaction and meaning in home automation. In Proceedings
of the Conference on Ubiquitous Computing (pp. 511-520).
New York, NY: ACM.

25. Truong, K. N., Huang, E. M., & Abowd, G. D. (2004).
CAMP: A magnetic poetry interface for end-user
programming of capture applications for the home.
In Proceedings of the International Conference on Ubiquitous
Computing (pp. 143-160). Berlin, Germany: Springer.

26. Ur, B., McManus, E., Pak, M. Y. H., & Littman, M. L.
(2014). Practical trigger-action programming in the smart
home. In Proceedings of the Conference on Human Factors
in Computing Systems (pp. 803-812). New York, NY: ACM.

27. Ur, B., Pak, M. Y. H., Brawner, S., Lee, J., Mennicken, S.,
Picard, N., Schulze, D. & Littman, M. L. (2016). Trigger-
action programming in the wild: An analysis of 200,000 IFTTT
recipes. In Proceedings of the Conference on Human Factors
in Computing Systems (pp. 3227-3231). New York, NY: ACM.

28. Woo, J. B., & Lim, Y. K. (2015). User experience in do-
it-yourself-style smart homes. In Proceedings of the
International Joint Conference on Pervasive and Ubiquitous
Computing (pp. 779-790). New York, NY: ACM.

https://doi.org/10.1207/S15327051HCI16234_05
https://hal.inria.fr/hal-01265223/document
https://doi.org/10.1109/ICCE-TW.2015.7216911
https://doi.org/10.1145/1358628.1358911
http://dl.acm.org/citation.cfm?id=2422546
https://doi.org/10.1145/2422531.2422546

	Addressing the Need to Capture Scenarios, Intentions and Preferences: Interactive Intentional Programming in the Smart Home
	Introduction
	Related Work
	Tools and Technologies
	Weaving Smart-Home Technologies into the Real Home
	Mismatch between User Needs and Existing Tools
	Intentions and Conflicts
	Preferences and Overrides
	Summary

	First-Person Experience of Smart-Home Programming
	Chronological Overview
	User’s Intentions and Implemented Rules
	Summary

	Analysis of Users’ Intentions and the Corresponding Rules
	Sensing Activities and Scenarios
	Capturing Intentions and Preferences
	Contextual Actuation
	Summary

	Towards Capturing the Right Information for the Smart Home
	Domain Model and Concepts
	Scenarios
	Intentions
	Preferences

	Chain of Behaviors
	Interactive Intentional Programming
	Summary

	Discussion
	Conclusion
	Acknowledgements
	References

