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Introduction
The last few years have witnessed tremendous growth of the 
Internet of Things (IoT), including connected and smart devices 
for the consumer market. A succession of notable products have 
been introduced and each has marked the advance of technologies 
into the home, including NEST, a learning thermostat, in 2011; 
SmartThings Hub, originally launched as a KickStarter project in 
2012; Philips Hue, an intelligent LED lighting system, in 2012; 
and the rivals Amazon Echo and Google Assistant, smart speakers 
with intelligent personal assistant capabilities, in 2016. Through 
such products, together with the availability of different types 
of sensors, smart outlets, smart appliances and devices, it has 
become possible for consumers to program and automate their 
homes to some extent. Accordingly, smart-home technologies 
have moved out of well-controlled laboratory environments 
(De Ruyter & Aarts, 2004; Intille, 2002; Kientz et al., 2008; 
Offermans, van Essen, & Eggen, 2014) and into the messy and 
nuanced everyday lives of ordinary people. Connected products 
are designed with programming interfaces as the primary way to 
interact with them, thereby blurring the line between product and 

tool. The traditional principle of designing products ready for use 
has faded and been replaced by productized toolboxes that require 
end users to customize and finish the design themselves to fit their 
individual contexts and lifestyles. 

In this article, we first review the extensive body of work 
related to end-user programming in the smart home, and then 
analyze the particular issues, based in part on a first-person user 
experience, leading to a set of new concepts for better capturing 
relevant information for the design of smart homes. We outline 
how these concepts help solve common issues and conclude with 
an outlook on future steps.
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Related Work
In the following, we review the issues related to end-user 
programming in the actual contexts of smart homes. While end-
user programming or development (EUD) is a large and diverse 
field, we focus here on issues that emerge when applying EUD 
to a private, sensitive context of everyday living. Furthermore, 
this style of EUD requires a mix of manual and screen-based 
tasks on different devices that are often scattered throughout the 
home environment.

Tools and Technologies

End-user programming tools for the home environment have 
been created and investigated in academia (Davidoff, Lee, Yiu, 
Zimmerman, & Dey, 2006; Dey, Sohn, Streng, & Kodama, 2006; 
Humble et al., 2003; Newman, Elliott, & Smith, 2008; Offermans 
et al., 2014; Truong, Huang, & Abowd, 2004). However, they 
have largely remained at the proof-of-concept level, and today 
most end users program their smart homes by using trigger–action 
programming (Ur, McManus, Pak, & Littman, 2014; Ur et al., 
2016) to develop rules in the form of if trigger, then action. A 
prime example is the website IFTTT (https://ifttt.com) which 
stands for if this, then that. IFTTT offers services that enable end 
users to create a new recipe by following simple steps to select 

the event trigger and the corresponding action. These recipes can 
then be shared with other users via the IFTTT website. Similarly, 
SmartThings (https://smartthings.com/) offers an interface that 
allows end users to define trigger conditions and actions. Similarly 
to IFTTT, SmartThings offers predefined templates for users to 
easily configure rules. Differently from IFTTT, SmartThings 
allows some actions to be taken under certain conditions, e.g., 
preconfigured modes (such as Home, Away, and Night) or selected 
periods (such as from 9 p.m. to 6 a.m., or from sunset to sunrise). 
If the standard templates do not meet users’ needs (e.g., combining 
multiple sensor inputs), SmartThings allows users to write their 
own programs in the Groovy programming language. Stringify 
(https://stringify.com/) is yet another programming interface that 
offers trigger conditions and actions. Differently from IFTTT 
or SmartThings, Stringify uses a drag-and-drop graphical user 
interface instead of a textual (programming) interface.

Behind the end-user programming interface there is also 
middleware for smart home spaces. However, most state-of-the-art 
middleware solutions are not yet friendly enough for end users to 
turn their needs into rules. They include Samsung SmartThings, 
Apple HomeKit (https://apple.com/ios/home/), Google Assistant 
(https://assistant.google.com/), Axeda Machine Cloud (http://
ptc.com/axeda), Microsoft HomeOS (https://www.microsoft.
com/en-us/research/project/homeos-enabling-smarter-homes-
for-everyone/), Berkeley Building-Application Stack (Krioukov, 
Fierro, Kitaev, & Culler, 2012), Octoblu Integration of Everything 
(https://octoblu.com/), and Wyliodrin—The IDE for IoT (https://
wyliodrin.com/). The aforementioned all require that an application 
provides a manifest to describe the desired services by specifying 
the corresponding sensors and actuators on a per-rule basis. There is 
a clear mismatch between users’ ability to program and the current 
programming interfaces. An exception is the Wukong platform 
(Huang et al., 2015), which defines the abstraction of sensing and 
actuation to facilitate IoT programming, and, in effect, enables 
write-once-deploy-everywhere for proficient programmers. 
However, the imperative nature of current middleware solutions 
remains a major issue in end-user programming. Yet another 
problem in current middleware solutions is their inability to adapt 
to changes. IoT devices are rather unreliable by design, due to 
the requirements of low cost and low power consumption (e.g., 
battery power). Devices may even malfunction or be disconnected 
from the home network from time to time. Because smart-home 
programs should be deployed once and run forever, there needs to 
be a certain degree of redundancy in sensing/actuation capabilities.

Weaving Smart-Home Technologies 
into the Real Home

Programming the smart home is not a one-time task, but a 
continuous process usually undertaken by a single knowledgeable 
person—a guru (or hacker)—in the family. Mennicken and 
Huang (2012) describe four phases of growing a smart home: 
initial planning, preparing technical infrastructure, iterating until 
it fits, and reaching (temporary) stability. Woo and Lim (2015) 
investigated how participants in eight households in Korea 
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applied trigger–action style programming to create rules, and 
how these rules were adopted. They found that after the initial 
installation stage, the participants experimented with new rules, 
went through a process of incorporating the rules into their family 
daily routines, and finally reached a stage of either routinization 
or removal of unsuitable rules. Clearly, it is important to support 
all phases of the smart home development process, from initial 
setup to fine-tuning and adoption of smart home behaviors, and 
also to consider all family members including the passive users 
(Mennicken & Huang, 2012).

Mismatch between User Needs and Existing Tools

From studies on end-user programming in the wild (Demeure, 
Caffiau, Elias, & Roux, 2015; Mennicken & Huang, 2012; Woo & 
Lim, 2015) as well as exploratory studies into future smart-home 
programming (Bellucci, Vianello, Florack, & Jacucci, 2016; Ur 
et al., 2014), it emerges that simple trigger–action programming 
rules often cannot adequately express users’ intentions and 
mental models. For example, end users usually do not think in 
terms of physical sensors, but of triggers at a more abstract level, 
e.g., activities or states. In an explorative study conducted by 
Ur et al. (2014), three categories of triggers were identified: (1) 
physical sensors (e.g., motion is detected), (2) triggers related to 
activities, locations, and states (e.g., when no one is in the room), 
and (3) fuzzy triggers that might involve machine learning (e.g., 
when the water is too hot). The latter two categories are not 
well supported by the current trigger–action-style programming 
tools. Another explorative study was conducted by Bellucci et al. 
(2016) using a toolkit (T4Tags 2.0) that contains tangible tokens. 
Common triggers that they found included presence in a room, 
time, location, and environmental sensing, while common actions 
included sending notifications or reminders, controlling lights, 
and controlling an appliance. Time was found to be an important 
trigger, but users were often not satisfied with the built-in temporal 
triggers (Demeure et al., 2015). To better support mental model 
accuracy, Huang and Cakmak (2015) recommended making a 
distinction between different types of triggers (states, events), 
as well as between different types of actions (instantaneous, 
extended, and sustained).

In order to work within the constraints of trigger–action 
programming tools, end users have to express the abstract 
triggers (e.g., whether someone is in the family room) by using 
simple rules with concrete sensors (such as whether specific 
physical motion sensors detect movements for a specific period 
of time). A meaningful smart-home behavior is thus broken up 
and described in several fragmented simple rules, which are 
linked to different physical sensors and actions. There are several 
problems with such ad-hoc solutions. First, without a connection 
to the original intention, each rule might not be easy to interpret 
or explain after a certain period of time. To manage the rules 
that they had created, end users in one study tried to associate 
meanings by adopting specific naming schemes (Demeure et al., 
2015). For example, one participant named rules by noting the 
devices, the triggered actions, the destination state of the device, 
and higher-level goals, while another participant followed the 

schema DAYTYPE–ACTION–CONDITION where DAYTYPE 
can be weekday, weekend, or holiday. A better solution would be 
to offer support to capture this information, rather than relying on 
users’ self-imposed naming schemes. Second, these simple rules 
are neither robust nor migratable, because they depend on the 
availability and functioning of specific sensors and actuators. If 
the specific sensor or actuator is not available (in a new household) 
or is broken (after some period of time), manual reprogramming 
of the rule is necessary, even if the original intention remains the 
same (see section on First-Person Experience below). HomeOS 
(Dixon et al., 2012), a smart-home operating system developed by 
Microsoft, addresses such issues by requiring that an application 
provide a manifest to describe the devices or services that it needs 
in order to function, providing a layer of abstraction above the 
physical devices.

Intentions and Conflicts

At a higher level, Mennicken, Vermeulen, and Huang (2014) 
identified three major challenges and directions for smart-home 
research—meaningful technologies, complex domestic spaces, 
and human–home collaboration—based on an extensive literature 
review, analysis of smart-home solutions, and filed studies. They 
argued that to achieve meaningful technologies it is important 
to support the goals and values of inhabitants. What are these 
goals and values of smart-home users? Based on need-finding 
interviews in the field, Takayama, Pantofaru, Robson, Soto, and 
Barry (2012) identified goals such as peace of mind, ecologically 
conscious, saving money, entertain and impress others, and 
personalize the home. They found that the satisfaction of home 
automators often comes from creating connections to the home 
and family members, rather than simply controlling the home. In 
another study, Mennicken and Huang (2012) summarized four 
main motivations for home automation: modernization, positive 
feedback cycles, hobby, and saving energy. The translation of 
such high-level needs into simple rules that connect rather crude 
sensors and actuators is extremely challenging. 

Mennicken and Huang further noted that smart technologies 
could result in conflicting high-level goals; for example, providing 
peace of mind through remote connection to the home can 
conflict with privacy and security concerns. In addition, different 
household members might have conflicting values or interests 
over time; for example, between parents’ energy saving and kids’ 
maximum comfort. Not only do needs differ among different 
households and among different members of the same household, 
but also needs can be different for the same individual over time. 
In several aspects, they argued for the necessity to tag applications 
with high-level goals, and to provide high-level rationales behind 
automation tasks. All these factors point to going beyond task-level 
rules to better capture the intentions of the users. A common issue 
is conflicting rules that end users produce unintentionally (Woo 
& Lim, 2015). Unexpected results occur when rules that were 
created for different reasons become active for the same devices 
with conflicting instructions. Since there is currently no interface 
to help users specify how such conflicts should be resolved or 
give priority to certain rules, the users have to manually revise the 
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rules through trial-and-error processes to avoid possible overlap 
of activations. Hereinafter, we may refer to end users’ goals and 
intentions interchangeably.

While supporting the intentions of end users in a smart 
home is important, it has long been recognized to be extremely 
difficult for a smart-home system to automatically infer users’ 
intentions. As Don Norman (2009) commented: “If only the house 
could read the mind of its owner. It is this inability to read minds, 
or, as the scientists prefer to say, to infer a person’s intentions, that 
defeats these systems” (pp. 121-122). There exists the problem 
of mutual intelligibility (Suchman, 2007, p. 80): not only is the 
smart-home system unable to decipher users’ intentions, but also 
users are often left in the dark about what the system knows about 
them, how the system knows it, and what the system is doing 
about it (Bellotti & Edwards, 2001). One of the reasons why it 
is so hard for the smart home to understand users’ intentions is 
because users can improvise—they can take situated actions 
(Suchman, 2007)—that are unpredictable from sensor data. A 
possible approach to resolving this intelligibility problem is to 
explicitly include people in the loop. Rogers (2006) argued for a 
shift from proactive computing to proactive people. This paradigm 
shift is also reflected in the interactive machine learning process 
(Amershi, Cakmak, Knox, & Kulesza, 2014) whereby users 
iteratively provide information to a learning system, allowing 
simultaneous usage and development of the learned model.

Preferences and Overrides

While users have long-term goals and intentions, they might also 
have short-term needs and preferences for the specific needs of 
the moment. For example, Alan, Shann, Costanza, Ramchurn, and 
Seuken (2016) implemented three different types of thermostats—
manual, direct learning, and indirect learning—that consider 
tradeoffs between comfort and price, and then evaluated the three 
designs in a field study with 30 UK families for over a month. 
In the direct learning design, they explicitly designed the system 
to allow users to temporarily override the predicted optimal 
temperature setting, after which the system would wait for a 
certain time before taking back control and setting the temperature 
back to the learned optimal temperature setting. Moreover, the 
researcher provided a boost option that directly changed the 
temperature setting without influencing the learned user’s model. 
The results were generally positive in that the end users were 
happy with the thermostat autonomously responding to real-time 
prices on their behalf, and they felt in control. This in-situ study 
indicates that smart climate-control systems can operate largely 
autonomously from a good user model, and this is accepted by end 
users as long as real-time control is possible through preferences 
to allow for meaningful overrides and adjustments of system 
behavior according to ad-hoc needs.

Summary

The above review of studies on end-user programming in the 
wild and exploratory studies into future smart-home experiences 
shows that although trigger–action programming has gained 

popularity over the last few years (Ur et al., 2014; Ur et al., 
2016), simple rules are neither sufficient to express desirable 
home behaviors, nor are adequate technologies available and 
accessible to end users. As Mennicken et al. (2014) argued, future 
smart homes need to support higher goals and values of the users. 
Consequently, without clearly capturing these, it is very difficult 
to orchestrate smart-home behaviors to support users’ needs, to 
resolve desired behaviors towards the often messy physical graph, 
and to mitigate conflicts or interference between overlapping 
behaviors. As argued by researchers such as Rogers (2006), end 
users of the smart home should play a more active role. Instead 
of having a smart system that imposes an interpretation of the 
current contexts and user intentions based on sensor data, it might 
be better to provide an interface for the end users to express their 
intentions within a certain scenario.

First-Person Experience of 
Smart-Home Programming
Over the last three years, one of the authors has installed more 
than 150 heterogeneous connected devices in order to gain first-
hand experience of the Internet of Things in an actual personal 
home context. Because of a move to a new house and the need to 
replace the main hub, the researcher completed three rounds of 
installation and reinstallation, offering a rare case study on smart-
home experience beyond the initial installation. In the first part of 
this section, we will give a chronological overview of the three 
installations and noteworthy issues that emerged in continual 
longitudinal use. The second part summarizes and compares the 
user’s intentions and the programmed rules in different categories.

Chronological Overview

First installation: At the beginning of the year 2014, the researcher 
began to install sensors and smart devices into his home. By 
the end of 2014, about 50 devices had been installed and more 
than 50 smart rules had been developed during this first phase 
of experience using mostly SmartThings and IFTTT. The initial 
installation of the devices and rules was more troublesome than 
the researcher had expected. The researcher frequently needed to 
reinstall devices to make adjustments. In addition, it proved very 
difficult to tune the sensitivities of sensors to achieve the intended 
smart-home behaviors. Oversensitivity creates many false alarms, 
while undersensitivity fails to trigger the actions properly. Both 
are undesirable. Unfortunately, today’s feedback systems for 
adjusting and calibrating sensors are poor inasmuch as (1) they 
offer a limited input and output interface, (2) users sometimes 
need to make changes in the physical world in order to see the 
effect in the cyber space, and (3) feedback is time-delayed, e.g., 
cool-down periods for motion sensors make tuning difficult or at 
least time-consuming. 

Second installation: Around the end of 2014, the researcher 
moved to a new home. Consequently, the researcher reinstalled all 
sensors and smart devices physically into the new environment, 
which had a different layout. The researcher found that it was better 
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to place the devices in the corresponding room, which was not 
always straightforward to achieve. Because rules are associated 
with the device IDs, if a sensor and its associated actuators are 
not properly labeled and moved accordingly, the motion sensor 
in the dining room, for example, may erroneously trigger 
the light in the living room to turn on. Many more difficulties 
were encountered during the second installation process: Some 
physical-environment-specific rules from the old house could not 
be easily applied in the new house, as the spatial relationships 
among rooms and also between devices and rooms were different. 
For example, in the first house (Figure 1), because the dining room 
is next to living room and already receives sufficient lighting, 
only when people are eating at the dining table should the light 
turn on, and not just when someone walks through. In the second 
house, the dining room is next to the family room instead of the 
living room.

Third installation: In late 2015, the main smart-home hub 
was upgraded. However, because the new hub did not offer a good 
migration tool, the researcher ended up reinstalling all the devices 
to the new hub. By then, the family was used to the convenience 
of automatic behaviors, and would complain if the system failed 
to do things automatically. After two years, device failures started 
to occur. However, it was hard to debug a faulty device or system, 
due to the lack of interface support (e.g., display). In addition, it 
might be too tedious for smart-home users to deal with the faults 
of each individual device, often due to an insufficiently robust 
design that struggles with interruptions of wireless communication 
or battery power.

Additional installations: From late 2015 to late 2016, 
50 more devices and 50 more rules were added. There were 
additional points of difficulty when these additional devices 
and rules were added. It was often cumbersome to adjust some 
of the old rules as some new devices and new rules can easily 
interfere with each other. For example, a light was programmed 
to be turned on when motion started and turned off when motion 

stopped. Later, a second rule was added, to turn the light on when 
the door was opened and turn it off five minutes after the door 
was closed. There was an instance when the light was turned off 
while users were active in the room because a user had opened 
and closed the door five minutes previously. Looking at the 
rules independently, they made sense, but together, unwanted 
behavior would occur. Depending on user preferences, turning 
on lights could have priority over turning off lights, but current 
systems do not notify the user about a potential interference, 
nor do they allow one to specify priority easily. Furthermore, 
because more customized rules (through multiple cloud services, 
e.g., SmartThings, IFTTT, Stringify) had been implemented to 
integrate more devices into the system, it became very hard to 
debug a problem as an actuation could be triggered by more than 
three different cloud services.

In summary, the change from the first to the second 
installation was due to moving house, while the change from 
the second to the third installation was necessary because of 
hardware upgrades. Both are common aspects of contemporary 
lifestyles and help illustrate the everyday problems that arise in 
the smart-home domain due to incompatibility, hardware and 
software faults, and configuration or usage problems that result 
from flawed interfaces and inferior usability and design.

User’s Intentions and Implemented Rules

From the chronological overview, several general issues around 
setup and configuration, and also around maintenance and updating, 
become apparent. These issues are related to hardware failures, 
upgrading, physical installation, logical mapping to space, and the 
complexity of scaling a smart-home installation leveraging different 
external services. In this second part, we focus on programming 
and how users’ intentions were mapped to rules, aiming to show 
how sensible user needs and high-level requirements cannot be 
expressed in rules in state-of-the-art smart-home technologies.

(a) First house (b) Second house
Figure 1. Floor plans of first and second installation sites.
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From our first-person experience of smart-home 
programming, we identified different types of top-level intentions. 
Table 1 shows user intentions as reported by the researcher, divided 
into four categories: (1) sustainability (by saving water, energy, 
or other resources), (2) security and safety, (3) convenience, and 
(4) privacy. Note that there are overlaps, e.g., between 1 and 
3 in the sense that turning off power for devices under certain 
conditions serves the purpose of saving energy and does so in a 
highly convenient way through full automation.

Looking at the rules actually implemented in the researcher’s 
smart home, as shown in Table 2, two categories were identified: 
(1) automatic control and (2) automatic notification. Although 
remote control and remote monitoring are technically part of 
smart-home systems, they are not considered here because they 
lack crucial aspects of automation and delegation of control. 
Due to the complexity of rules and interoperability problems 
between different smart-home systems and their counterparts in 
the cloud, we note that most rules in Category 1 connect isolated 
subsystems to implicitly minimize interference with other parts 
of the smart home, for instance, the rules about room lighting or 
heating. Category 2 rules simply connect sensors to a notification 
service that alerts the home owner. While this serves the purposes 
of security, and of indication and notification, the quantity of 
potentially captured events can result in too few reports and a lack 
of information, or too many and thereby information fatigue. 

Summary

Comparing Tables 1 and 2 reveals clear differences between users’ 
intentions and what could be realized using rules connecting 
sensors to actuators or information displays. Although the rules 
cover many aspects of a smart home, at a low level the particular 
technologies demark often insular solutions, as few solutions 
are capable of supporting more complex uses spanning multiple 
devices or rooms of the smart home. For example, Table 3 shows, 
for a specific smart object in the user’s home, how different rules 
and intentions can be applied to a single object and how the rules 
and intentions are interleaved or even overlap. This gives rise to 
two potential problems: (1) technologically, some of the rules 

might become complicated to create, test, and maintain, and (2) 
it will be very hard for someone else to understand or debug a 
system just by looking at the rules. For example, why did we 
not automatically turn on the dining-room light, and why is the 
time-out period longer between 7 p.m. and 10 p.m. (a semantic 
problem that indicates a need for higher-level information).

Analysis of Users’ Intentions and the 
Corresponding Rules
With current tools, end users have to first distill their intentions into 
a simple automation scenario and then implement this scenario 
using the tools available. In practice, many more problems and 
issues emerge for the curious and courageous practitioner: even 
a perfectly designed and fine-tuned smart home needs to evolve 
with changing user needs—as expressed through preferences 
and overrides, but facilitated through learning and continuous 
adaptation. At a higher level, this is enabled by learning about 
users’ preferences instead of operational rules. Only when we 
abstract the sensory and actuation capabilities can a smart-home 
system leverage information about redundancy, conflicts, and 
interference while still allowing users to be in control. 

In the following, we expand the problem space to match 
the requirement that ideally, intentions and preferences should be 
directly recognized and programmable in technology. The problem 
space can be classified into three main categories: sensing activities 
and scenarios (what is happening?), capturing intentions and 
preferences (how would the user like the environment to be?), and 
contextual actuation (what should happen in the environment?). 
We will outline the categories by characterizing them in terms of 
design choices, involved technology, and, if possible, deficiencies 
of employed solutions.

Sensing Activities and Scenarios

Related research shows that users want simplicity in programming, 
and expect that a system should be able to automatically deal with 
different situations in a smart home in a smart way. Unfortunately, 
what can be programmed with current state-of-the-art technology 

Table 1. User intentions. 

1. Saving Energy/Resources 2. Security/Safety

• Reduce energy usage by turning off power (light, HVAC, plug/switch)
• Reduce irrigation water
• Get notified when power or water is used 

• Arm the house’s security system
• Close/lock the door
• Turn on the security cameras
• Pretend that we are still in the house
• Alert neighbors and authorities (turn on siren)
• Shut down the electric/gas/water system
• Get notified when something goes wrong

3. Convenience 4. Privacy

• Turn on the light 
• Turn on the HVAC
• Turn on plug/switch
• Disarm the security system 
• Open/unlock the door  
• Wake me up at the right time
• Get information for daily routine, e.g., today’s weather or traffic conditions

• Turn off the indoor cameras 
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Table 2. User-implemented rules. 

1. Automatic control 2. Automatic notification

• Turn on the lights in the front porch and driveway
 - when there is motion, between sunset and sunrise

• Turn on the lights in the living/family room
 - when the door is opened, between sunset and sunrise
 - when there is motion, between sunset and sunrise

• Turn off the lights in the living room 
 - between 7 and 10 p.m.: after 15 minutes without motion 
 - at other times: after 5 minutes without motion

• Turn off the lights in the family room, dining room, kitchen, front porch, 
driveway

 - after 5 minutes without motion
• Turn lights on and off throughout the house to pretend that we are still at 

home
 - when we are not home, between sunset and 10 p.m.

• Turn on all lights (and even change their colors)
 - when intruders are detected

• Turn on the siren
 - when intruders are detected

• Turn off the power plug for the TV
 - when everyone leaves the house 

• Turn off the power plug for the office
 - when I leave the house 

• Turn off the HVAC in the living/family rooms
 - when everyone leaves the house
 - when everyone goes to bed

• Turn off the HVAC in my office
 - when I leave the house 

• Turn on the HVAC in the living/family room
 - when I arrive home
 - when I get up

• Turn on the HVAC in my bedroom
 - 10 minutes before I get up

• Close/lock the door
 - 5 minutes after we leave the house
 - 5 minutes after we leave it open or unlocked

• Open/unlock the door
 - when I am coming back 

• Turn on the security cameras
 - when everyone leaves the house
 - when everyone is sleeping

• Turn off the cameras
 - when I am coming home
 - when I wake up

• Arm the security system
 - 5 minutes after everyone leaves

• Disarm the security system
 - when any household member arrives

• Reduce irrigation water
 - when it rains outside

• Charge the electric vehicle 
 - between 11 p.m. and 7 a.m.

• When the siren goes off
• When a door is opened, and I am not home 
• When motion is detected (PIR sensor or video camera), and I am not 

home
• When CO/smoke is detected 
• When CO2 goes above a certain level
• When water leakage is detected
• When it is time to water/fertilize the garden
• When the sprinkler is on
• When the security system control box is moved or disconnected
• When someone rings the doorbell  
• When I forget to close the door
• At 6 a.m., the weather forecast and traffic condition
• At the end of each month, the energy usage analysis

Table 3. User-implemented rules on a single object (example).

Things Rules Intentions

Light in living room

Turn on, when there is motion in the same room, between sunset and sunrise;
Turn on, when the door is opened, between sunset and sunrise;

Convenience 

Turn off, 15 minutes after the motion stops, when it is between 7 p.m. and 10 p.m.;
Turn off, 5 minutes after the motion stops, when it is between 10 p.m. and 7 p.m.;

Saving energy/resources

Turn on/off at random times, when owners are not at home, between sunset and 11 p.m.
Turn on, when intruders detected

Security
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still falls far short of such expectations. Here, we propose to 
distinguish between an activity and a scenario; the former refers 
to a sequence of user actions with a clear purpose, while the latter 
connects such activities to a context (or location) and goes beyond 
human activities. For example, reading is an activity, whereas 
reading in the bed and reading in the study are two different 
scenarios with probably very different intentions—trying to fall 
asleep, or not. Likewise, the end of an activity can be expressed 
as a scenario to allow for automation or notification. For end-
user programming in the home, scenarios are more relevant and 
probably more stable over the long run, whereas activities without 
contextual information might be prone to many variations. Users 
in a smart environment may have complex needs that correspond 
to similar, yet slightly different scenarios. To take smart lighting 
in the living room as an example:

• When users are only walking through, they need minimal light, 
probably from a low light source.

• When users are chatting, possibly with guests, they need 
medium to maximal light.

• When users are watching TV, they need medium-to-low 
indirect light.

• When a user is reading a book, he/she needs maximal light, but 
in the form of a spotlight.

• When a user is reading from an illuminated tablet, he/she only 
needs low light.

• When users need to find lost keys or clean up spilled juice, they 
need maximal light, likely coming from the ceiling.

Thus, more and more scenario variants can grow out of 
an initially simple scenario of providing light in the living room. 
It is very difficult for conventional rule-based trigger–action 
programming to address the complexity of these scenario variants. 
A first reason is that scenarios and activities are not captured 
as such, but only as sensor-based triggers, which makes reuse 
difficult (or results in cloning triggers that might then interfere). 
Second, it requires complicated imperative rules to describe the 
scenarios, and complexity increases exponentially when new 
scenarios inevitably need to be added over time. What is needed is 
the ability to explicitly define a scenario and to allow the scenario 
to be fine-tuned, amended, or branched into new ones over time. 
We envision that a better user interface needs to be developed 
to allow multiple input combinations of scenarios mixed with 
user intentions.

Capturing Intentions and Preferences

Intentions can be seen as the long-term perspective of what we 
consider rationally the right things to do. They are expressed 
and formulated by end users in moments of clarity and family 
consensus, and from a more distanced view than usual daily life. 
For instance, New Year’s resolutions carry traces of intentions 
and could be named intentions if they are accompanied by 
stronger commitments. In smart-home programming, intentions 
are rarely formulated explicitly. They are implicit to the planning 
and design of a smart-home system, and often surface only as 

generic intentions, such as saving resources, protecting life and 
assets, being in control, and enjoying convenience and comfort. 
Intentions can, however, be very instrumental for resolving 
conflicting rules in a meaningful way. For example, a common 
rule for smart lighting is to turn on the light when the PIR motion 
sensor detects activity and to turn off the light when the PIR motion 
sensor detects no activity. The intentions behind these rules might 
be convenience and sustainability. When the rules are isolated and 
the intentions are implicit, it is difficult to make proper trade-offs. 
By explicitly capturing the intentions behind the rules, it becomes 
possible for automated systems to reason about meaningful trade-
offs for the users.

Moving from the long term to the short term, user 
preferences are an important concept to capture desired changes 
in automation—ad-hoc deviations that demark the flexibility of 
living spaces, give end users a strong sense of control over the 
automated system, and can be a source of data that the automated 
system learns from to adapt over time. With user preferences, 
conflict resolution becomes ever more complex. Not only do 
multiple users have conflicting preferences, even an individual 
user can have conflicting preferences with respect to long-term 
goals (e.g., losing weight) and short-term desires (e.g., ice-cream 
now!). In the smart-home setting, whether to open the blinds or 
to turn on the lights involves the conflict of whether to prioritize 
the intention of saving energy or that of privacy and security. 
Different users could also have conflicting perspectives: For the 
husband, turning off the lights means saving energy; for the wife, 
keeping the lights on makes her feel safe. There is clearly a need 
to record and learn users’ preferences and intentions.

Contextual Actuation

In addition to sensing and triggering conditions, smart-home 
programming also needs to address smart actuations that 
can adapt from one scenario to another. It is desirable for 
smart-home programming to be able to be reused across like 
scenarios, becoming a template and allowing for adaptations 
during deployment. It is desirable to open up the possibility of 
fulfilling users’ needs by different means. This can be achieved 
by separating the means from the objective. For example, the 
objective of Get me some light can be instrumented as the means 
of Lights on or Blinds up depending on the time of day, energy 
saving possibilities, and privacy concerns. What are needed are 
device-independent actuations, decoupling the physical layer 
from intentions. All of these occur when the physical system and 
system complexity grow over time with new devices, component 
replacements, upgrades, and upscaling in the smart home. Based 
on the aforementioned abstraction, smart-home programs should 
be able to adapt to changes by remapping the logical actuation 
to the currently available physical actuators. Finally, more subtle 
qualities of automated behavior, such as dimming instead of 
switching, perhaps depending on certain times when the users 
would like fewer disturbances, are very difficult for end users to 
program using current technologies, especially in a conditional or 
parameterized way. 
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Summary

The overview of the different areas of the expanded problem 
space shows that automated living and work spaces such as the 
smart home pose challenges that are neither fully understood, 
nor solved in practice, let alone in commercial applications 
of end-user programming systems. When end users program 
rules, they specify which concrete behavior is desired when 
a concrete event occurs. This is, however, insufficient for 
addressing the daily behavior of end users and their needs over 
time in the broader context of everyday life. Consequently, the 
possibilities for algorithmic decision making or even machine 
intelligence are very limited. Even if a user can program, writing 
trigger–action rules for hundreds of devices at home is a daunting 
task, potentially amplified by a collection of different platforms 
and interfaces. Current programming interfaces do not allow users 
to program at a proper level of abstraction and they inhibit reuse 
of de-facto-similar rules across devices, scenarios, and platforms 
(e.g., smart lighting rules that differ little from smart climate 
rules except for the particular sensors and actuators to be used). 
At the same time, low-level programming such as trigger–action 
rules depreciates fast when devices are added or upgraded, or 
simply fail the test of time. In the following section, we develop 
the expanded problem space towards a richer domain model to 
capture the right information.

Towards Capturing the Right 
Information for the Smart Home
We envision much better informed and much more capable 
home programming environments in which users should be able 
to delegate most automation functionality to smart, underlying 
control systems while retaining a certain level of control over 
elements that are critical to their experience. Ideally, users should 
be able to specify their intentions at a high enough level, so that 
smart-home solutions can figure out the right actuation means 
based on predetermined user preferences and machine learning. 

To progress in this domain, we propose two radical measures: 
first, better capturing of information about scenarios and intentions, 
and second, the creation of feedback loops between interaction 
and captured information that facilitate adaption and learning over 
time. Covering both measures fully is beyond the scope of this 
article. However, we will address the first part in the following by 
introducing novel concepts for designing smart homes that lay the 
informational foundations.

Domain Model and Concepts

The system envisioned above operates on a domain model that 
takes users’ needs as input, and then learns and adapts accordingly. 
Compared to direct mappings between sensors and actuators, i.e., 
concrete trigger–action rules (cf. Figure 2, left), a domain model 
consists of concepts that are more abstract, but at the same time 
more powerful as a structure to gather information about the 
context of the smart home (as a system), the context’s users, 
and their intentions. In short, we aim at capturing and modeling 
information for designing a smart-home system, by using the 
following concepts (see Figure 2, right):

• Scenarios determine the current state of the smart-home 
system by abstracting from sensors in the environment towards 
states, i.e., what is happening in the world or what is currently 
the state of affairs;

• Intentions determine abstract behavior of the system and the 
general end-user priorities for realizing this behavior, i.e., 
which behavior of the smart home is desired, or what should 
happen given the current state of affairs;

• Preferences allow for ad-hoc control by end users in the 
environment by parameterizing behavior from a user interface, 
i.e., what small changes need to be applied to the way the 
system acts right now;

• Actuations discover and determine the right action, i.e., how a 
combination of states, intentions and preferences can result in 
the desired changes in the environment by using a set of suitable 
direct actuators such as lamps, audio devices, and locks.
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Figure 2. Comparison of conventional rules (left) and new domain model with concepts (right).
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While the concept of actuations is essential to the operation 
of a smart-home system leveraging the domain model, elaborating 
on the details of actuation is beyond the scope of this article. In 
the following, the first three concepts—scenarios, intentions, and 
preferences—will be explained with regard to their properties, 
how they differ from conventional end-user programming 
concepts, and how they relate to each other.

Scenarios

A scenario connects a context (e.g., a location) to sensor data 
indicating activities or system states. This means that scenarios 
represent an abstract combination of sensors measuring real-world 
activity in the moment and scenarios can therefore be understood 
as temporal states of a system. Common example scenarios in the 
smart-home domain are (1) family on holiday, (2) evening, and (3) 
multiple family members in the living room. These examples show 
that scenarios are combinable (e.g., 1 + 2 or 2 + 3), and can even 
form contradictory combinations (1 + 3) that need to be resolved 
by the system at a later stage. A scenario is activated when (sensor) 
event data (see below) matches the conditions of the scenario, 
such as the time of day being between 18:00 and 23:00 (activates 
Example Scenario 2), or motion sensors recording the number 
of people entering a room (activates Example Scenario 3). Such 
system states can possibly be specified with arbitrary granularity; 
however, most use cases only require states that last from minutes 
to hours (Examples 2 & 3), or in exceptional cases, days (Example 
1). Likewise, the granularity of spatial locality can vary: scenarios 
can be linked to particular parts of the overall home context, 
such as rooms, corners, and working places; they can also extend 
further than the actual home to cover office or school presence 
(all depending on having relevant sensor data available) as long as 
they sufficiently describe relevant temporal states that can in the 
end be linked to meaningful system activity.

Compared to rule-based programming styles that are 
prevalent in the IoT domain, the use of highly semantic scenarios 
and the ability to represent and leverage more complex combinations 
of events and event data allow users to formulate semantic 

information about their everyday life in a more sophisticated way. 
Whereas rules can only capture device-specific data and connect 
them in simple ways, the domain model allows for a hierarchy of 
sensors to drive scenario activation from the highest semantics 
available. Conventional rules can capture conditions at device level 
efficiently, but are rather difficult for end users to translate towards 
activities—and such information is necessary for the smart home 
to act smart. Scenarios are constructed from semantic sensor data, 
which are not necessarily bound to specific sensors and therefore 
allow scenarios to be more portable, durable and robust over space 
and time, whereas rules break as soon as a specific device breaks 
or is temporarily unavailable. In summary, scenarios abstract from 
raw data, combine data towards the activation of a temporal state 
over a local context, and give meaning to this state.

Intentions 

End users in a smart-home context usually have diverse and 
more or less well-articulated needs. Such needs can be very 
specific, but commonly follow a general notion of quality of life. 
Different aspects of this form a general set of intentions, such as 
convenience or comfort, saving resources (time, energy), feeling 
in control, feeling safe and secure, or aiming to avoid distractions 
or promote social interaction. While intentions are certainly all 
desirable (to differing extents), they are quite general and have 
a guiding function of abstract behavior. They can be internally 
resolved towards objectives, as shown in Figure 2, which are not 
directly exposed to the end user and match the physical graph with 
its actuators in the home. As stated above, intentions represent 
our “good,” rational thinking that forecasts and plans. Capturing 
these thoughts is a novel approach and can often only be achieved 
through more complex interaction, examples that inspire, or 
defaults and templates that can be personalized. Figure 3 shows an 
example of two parallel intentions, save energy and convenience. 
The first intention has a higher priority than the second, which 
is internally resolved to two objectives, switch off lights (i.e., 
deactivate all lights, corresponding to save energy) and welcome 
light (i.e., activate a porch light, corresponding to convenience).
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Figure 3. Comparison of lighting examples using conventional rules and domain-model concepts.  

The right-hand part shows how parallel intentions are prioritized and resolved to parallel objectives and matching actuation.
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Preferences  

Still, everyday life will not always follow our plans, or guidelines 
derived from plans. Hence the counterpart to intentions is 
preferences. In contrast to long-term, rational thinking as represented 
by the concept of intentions, short-term preferences are crucial 
to capture user needs in the moment as shown by the study of 
different thermostats (Alan et al., 2016). Preferences essentially fit 
intentions to everyday life and shape how intentions are translated 
into actuation. Neglecting preferences would cause rapid ageing of 
the system’s operationalization of intentions, and the initial fit with 
everyday life would be lost. The concept of preferences would be 
ideally mirrored by simple, targeted interfaces that allow users to 
tweak system behavior in the moment.

Preferences are not exclusively hedonic; they can be seen 
as real-time corrective measures from which the system can learn 
in order to adjust the way long-term intentions are translated 
into actuation. Preferences are therefore crucial (1) to tweak the 
system’s behavior as a combination of intention-driven behavior 
and preference adjustments, and (2) to enable system learning and 
adaptation over time of intentions towards what inhabitants of the 
smart home actually prefer on a daily basis.

Chain of Behaviors

The above concepts form a chain from activity sensing to 
scenarios and system states, linking them to prioritized intentions 
and preferences, which finally determine actuation through 
actuators. Sensors and actuators, as low-level components, are 
omitted in this article. This chain is very different from other 
IoT programming approaches in the sense that it offers a way 
to express ambiguity and alternatives in intentions of one or 
more users, and to capture (ad-hoc) preferences in a consistent 
and highly semantic way. This is possible because this chain 
includes enough information for machine intelligence to reason 
and make decisions for the human users. Nevertheless, end users 
can interact with this intelligence through very context-specific 
and non-intrusive interfaces in the human environment. As an 
example, Figure 3 illustrates the simple case of light automation 
for saving energy: on the left-hand side, a rule is depicted that 
switches off the light when the door of a room is closed. On the 
right, a similar rule is shown with domain-model concepts that 
formulate a much broader use case, saving energy in the entire 
house, by switching all lights off in response to the absence of 
the inhabitants. This general behavior driven by the intention to 
save energy is mixed with a second intention, convenience, that 
will allow for all lights to be switched off except for the porch 
light, to allow returning inhabitants to safely enter the home. 
Although the concepts are individually not more complex than 
a simple rule, together they enable broader scopes of automation 
and intentionally programmed behavior.

Interactive Intentional Programming

In the first half of this section, we illustrated that a domain model 
can capture relevant information to address end-user needs for 
automation. In the remainder of the section, we will outline an 

approach to fill out and leverage this domain model: Interactive 
Intentional Programming (IIP). The approach essentially 
(re)structures the conventional usage phase into two sub-phases 
that correspond to domain modeling tasks performed in the 
respective sub-phases:
(1) In the setup phase, users specify (1) scenarios (high-level 

understanding of what is going on in the smart home) and 
(2) intentions for actuation (how the automated system 
should respond to active scenarios). This intentional 
programming part of IIP not only captures information 
about end-user intentions and preferences, but also aims at 
expressing how relevant particular intentions are in a certain 
scenario (prioritization).  

(2) In the use-and-refine phase, users interactively fine-tune 
the scenarios and preferences through daily use. That is, in 
this interactive programming part of IIP, the domain model 
is meant to evolve dynamically in an interactive way as it 
explicitly allows for frequent re-specification of intent and 
the adjustment of preferences at any moment. With this 
plasticity, IIP caters for the needs of everyday smart-home 
usage, in which exceptions are the rule. That is, in IIP the 
domain model acts as a growing knowledge base that learns 
preferences from user interaction and determines how 
automation should react to sensed data and control actuation.

The nature of IIP is that it is essentially an interactive form of 
domain modeling that leverages formal concepts like intentions, 
but also scenarios and preferences for aspects of programming 
automation that are conventionally implicit or tacit. 

In the following, we illustrate IIP with a first-person 
experience to demonstrate the viability of IIP through explicit 
modeling of scenarios, intentions and actuation. 

Scenario awareness is the capability of differentiating 
between a user’s actions under a diverse set of scenarios. As 
illustrated in Figure 4, the apparent behavior of a user leaving 
the house (door closes) may be for work or taking out the trash 
can. In the scenario of leaving for work, the user has an intention 
of security, and accordingly would like the door to be locked 
immediately and securely; in the scenario of taking out trash, the 
user has an intention of convenience for leaving the door unlocked 

Sensing 

Scenario 

Intention 

Actuation

Rule-based IIP

Door closes

Leaving 
for work

Taking 
out trash

Security Convenience

Lock door 
immediately

Keep door 
unlocked

Lock door  
in 3 minutes

Figure 4. Scenario awareness (visualized as a change of 
behavior from sensing to actuation).
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briefly until the user gets back indoors again. The conventional 
rule-based approach will leave users no choice but to set up a 
fixed-interval timeout, e.g., three minutes, for both scenarios; as 
experience shows, our first-person user (see above) was locked 
out of the house from time to time with this implementation. 
IIP, on the other hand, makes it possible to differentiate between 
scenarios and then to generate actuations as fitting as possible.

Intention awareness is the capability of differentiating 
between intentions of one or more users, given one or more 
scenarios. In the left-hand part of Figure 5, one user is carrying 
out scenarios of (recipe) reading and cooking at the same time, 
with intentions of comfort and health, respectively; each of these 
intentions leads to two possible actuations. Being unaware of 
intention makes a smart-home system unable to address potential 
conflict in actuations, and it is apparent that IIP can differentiate 
among possible actuations and make a conflict-free actuation 
decision. The right-hand part of Figure 5 shows another example 
in which there is no apparent resolution to a conflict. There are 
two users, both in the scenario of reading. However, one user’s 
intention is privacy whereas the other’s is energy saving. Together, 
these intentions lead to conflicting combinations of actuations. 
Specifically, privacy makes sure the blinds are closed, whereas 
energy saving tries to keep the lights off; if both are implemented, 
the room will never have light in the nighttime. Intention awareness 
allows IIP to differentiate and resolve conflicts among intentions. 
For example, a conflict can be resolved by prioritization of users. 
If one user has greater authority than the others, that user’s 
intention may override all others; conflict resolution can also be 
addressed by mitigating among multiple intentions.

Summary

The domain model and the IIP approach that we introduce here 
are responses to identified problems in the domain of smart-home 
automation. As explained above, we propose to tackle foremost the 
informational deficiencies of earlier approaches by capturing user 
needs as intentions and preferences, and users’ everyday behavior 
as scenarios. The domain model concepts—scenarios, intentions, 
and preferences—allow for a domain modeling approach that 
provides high-level semantics to what a smart-home system should 
achieve in a particular context and time. Together, these concepts 

inform and resolve everyday situations in a chain of behaviors, 
through scenario and intention awareness. This can be leveraged 
in novel smart-home systems that reason based on the provided 
input aggregated in the domain model and, in addition, extend it 
by learning from everyday behavior and changes in preferences.

Discussion
In the previous section, we introduce a novel domain model with 
concepts that aim at developing the possibilities of programming 
the smart home through user-friendly declarative means, 
instead of low-level imperative rules that we show to be rather 
disconnected from user needs (cf. Related Work and Analysis 
sections). We also frame an approach, Interactive Intentional 
Programming (IIP), which relies on frequent interactions with end 
users to create and evolve concrete instances of the domain model 
for the particular contexts of the end users. The domain model 
captures information that allows an IIP system to become scenario 
and intention aware. It is important to note that the IIP approach 
purposely departs from conventional trigger–action programming 
and uses far more abstract means to capture information that is 
intended to be leveraged by advanced control systems and by a 
middleware layer that resolves semantics to concrete actuation. 
The scope of IIP is limited to the management of information 
flowing in and out of the domain model. Nevertheless, IIP clearly 
addresses the different challenges identified in the first part of this 
article: capturing activities and scenarios, eliciting intentions and 
preferences, and connecting them into a new form of actuation 
that leverages high-level semantics to solve common problems of 
rule-based trigger–action programming:

• Higher goals of strengthening connections among family 
members (Takayama et al., 2012) and seamlessly supporting 
family rituals (De Ruyter, 2003) are still beyond current 
smart-home solutions, but might come within reach with IIP. 

• Conflict and interference of rules is an important aspect of 
smart-home automation that currently cannot be resolved 
within the realm of automation; it needs social interaction 
and mediation. IIP allows one to capture information at a 
high enough level such that conflicts become “visible” to 
the automated system and a resolution can be attempted, 
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Close blinds Turn off lightsTurn on lights 
if too dark

User 1 User 2

Open blinds 
if too dark

                                                                                               
Figure 5. Intention awareness (visualized as a chain of behaviors omitting the sensing part);  

left-hand part shows intentions with overlapping actuation, right-hand part with conflicting actuation.



www.ijdesign.org 65 International Journal of Design Vol. 12 No. 1 2018

M. Funk, L.-L. Chen, S.-W. Yang, and Y.-K. Chen 

e.g., prioritizing different intentions such as save energy 
and convenience as shown in Figure 3 towards a setting that 
switches off all lights except a porch light for convenience.

• Independence of physical devices, i.e., IIP allows for more 
generalized smart-home programming that can adapt to 
different sets of physical devices and reroute actuation, e.g., 
light can be provided by different sources in the context 
depending on the preferences of different users that are present.

• Robust classification of human activities and system states 
is supported by IIP. For instance, referring to the three 
categories of triggers identified in Ur et al. (2014), the 
reported intentions mostly relate to activity triggers, but not 
yet to fuzzy triggers that require learning and adaption (e.g., 
user preferences under different contexts). In other words, 
scenarios can represent states and can help deal with more 
sensed complexity than can rules.

• Simple rules do not protect against information overflow and 
alert fatigue. As an example, a user wants to make sure that she 
receives information that guests are in her house. If she uses 
simple rules for that, sometimes she will receive a false alarm, 
or too many alerts in the case of a real emergency. In such 
cases, she would have to use multiple mobile apps to track 
down the root cause of the problem, i.e., debugging on the fly. 
In contrast, IIP allows one to specify intentions that control the 
amount of information that end users are exposed to.

It is important to note that using higher-level semantics 
and restricting access to IIP to largely declarative means may 
make end users feel they have less direct control over their 
home environment. This results from delegating real-time 
decision making largely to a control system that is instructed 
by scenarios, intentions, and preferences expressed in domain-
model concepts. With conventional rule-based approaches, end 
users have to translate their intentions, combined with activity 
recognition through sensors, and encode them into atomic rules. 
In conventional rule-based systems, rules represent a direct 
connection between a sensor or event source, and an actuator 
that is triggered when the reading of the former meets a certain 
predetermined condition. End-user intentions are only indirectly 
represented in such rules, depending on the ability of end users to 
concretize their needs adequately. This is one of the most difficult 
tasks in programming, and inadequate training, expertise, or 
means may lead to conflicting, inconsistent, mutually interfering, 
or broken rules that ultimately do not satisfy user needs. 

Finally, when we look again at the first-person experience 
of smart-home programming, there are also blind spots in the 
intended behavior, in the form of desired smart-home behavior 
that is not even considered relevant because its realization in 
rules is not deemed feasible or practical. A critical point for the 
first-person experience as shown above is that intentions and rules 
largely correlate and end users cannot really think of intentions 
before implementation. For the purposes of this paper, we had 
to reverse-engineer the intentions from implemented rules and 
since the implemented rules represent a subset of what would be 
possible with IIP, it is clear that intentions are underrepresented in 
everyday smart-home usage.

Conclusion
Designing for IoT and the use of connected products in the smart 
home is difficult, as related research shows. In this paper, we 
present additional evidence focusing on the long-term use of such 
technology as it scales, evolves, and continues to pose challenges 
for the brave practitioner. A central conclusion is that the temporal, 
preferential, technical, and social complexity of mapping end-user 
intent to rules needs new concepts to better frame information 
that needs to be captured to create smart-home systems that better 
match users’ intentions. Based on the analysis of related work 
and an account of a multi-year first-person experience of smart-
home programming, we identify two main areas for improvement: 
first, better capturing information about scenarios, intentions, and 
preferences, and second, the creation of feedback loops between 
interaction and captured information that facilitate adaption and 
learning over time. In this article, we argue for new concepts 
organized in a domain model and propose Interactive Intentional 
Programming (IIP) as a novel smart-home programming approach. 
The domain-model concepts are explained and contrasted against 
trigger-condition–action rules and similar end-user programming 
systems. The concepts are explained in context through several 
examples that illustrate how the challenges identified earlier can be 
successfully tackled with IIP. In the end, the proposed IIP approach 
deconstructs and rebuilds contextualized IoT programming with 
a higher level of abstraction that enables a substantial use of 
machine intelligence in the domestic environment, as a shift from 
directly programmed automation towards a better balance between 
the human and the system.

While research into the operationalization of the domain 
model and IIP is currently in progress, the concepts have matured 
sufficiently and will be supported by technical implementations 
in the near future. What also changes with approaches like IIP 
that leverage conceptually higher-level data is how we will design 
future smart-home products: we need to address different stages 
of technology adoption and use, we need to account for failure 
transparently, we need new interfaces to information and learning 
machines, and we need to carefully design the nuances of human–
machine cooperation in personal environments. As a contribution 
to future design according to these principles, this article provides 
background, rationale, and conceptual building blocks.
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